Aims. Instability is a common cause of failure after total hip arthroplasty. A novel reverse total hip has been developed, with a femoral cup and acetabular ball, creating enhanced mechanical stability. The purpose of this study was to assess the implant fixation using
Aims. The primary aim of this trial was to compare the subsidence of two similar hydroxyapatite-coated titanium femoral components from different manufacturers. Secondary aims were to compare rotational migration (anteversion/retroversion and varus/valgus tilt) and patient-reported outcome measures between both femoral components. Methods. Patients were randomized to receive one of the two femoral components (Avenir or Corail) during their primary total hip arthroplasty between August 2018 and September 2020.
Early micromotion of hip implants measured with
Aims. The objective of this study was to compare the two-year migration and clinical outcomes of a new cementless hydroxyapatite (HA)-coated titanium acetabular shell with its previous version, which shared the same geometrical design but a different manufacturing process for applying the titanium surface. Methods. Overall, 87 patients undergoing total hip arthroplasty (THA) were randomized to either a Trident II HA or Trident HA shell, each cementless with clusterholes and HA-coating. All components were used in combination with a cemented Exeter V40 femoral stem. Implant migration was measured using
Background. Short bone-conserving femoral stem implants were developed to achieve more physiological, proximal bone loading than conventional femoral stems. Concerns have arisen, however, that improved loading may be offset by lower primary stability because of the reduced potential area for bony contact. Aims. The aim of this study was to determine the primary stability of a novel short femoral stem compared with a conventional femoral stem following cementless total hip arthroplasty (THA), in a prospective, blinded, randomised, controlled trial using
Aims. Vitamin E-infused highly crosslinked polyethylene (VEPE) has been introduced into total hip arthroplasty (THA) with the aim of further improving the wear characteristics of moderately and highly crosslinked polyethylenes (ModXLPE and HXLPE). There are few studies analyzing the outcomes of vitamin E-infused components in cemented arthroplasty, though early acetabular component migration has been reported. The aim of this study was to measure five-year polyethylene wear and acetabular component stability of a cemented VEPE acetabular component compared with a ModXLPE cemented acetabular component. Methods. In a prospective randomized controlled trial (RCT), we assessed polyethylene wear and acetabular component stability (primary outcome) with
We performed a three-year
Aims. Vitamin E-diffused, highly crosslinked polyethylene (VEPE) and porous titanium-coated (PTC) shells were introduced in total hip arthroplasty (THA) to reduce the risk of aseptic loosening. The purpose of this study was: 1) to compare the wear properties of VEPE to moderately crosslinked polyethylene; 2) to assess the stability of PTC shells; and 3) to report their clinical outcomes at seven years. Patients and Methods. A total of 89 patients were enrolled into a prospective study. All patients received a PTC shell and were randomized to receive a VEPE liner (n = 44) or a moderately crosslinked polyethylene (ModXLPE) liner (n = 45).
This was a randomised controlled trial studying
the safety of a new short metaphyseal fixation (SMF) stem. We hypothesised
that it would have similar early clinical results and micromovement
to those of a standard-length tapered Synergy metaphyseal fixation
stem. Using
Osteolysis secondary to ultra-high molecular weight polyethylene (UHMWPE) wear is a leading cause of late-term implant failure via aseptic loosening in patients treated with total hip arthroplasty (THA). Radiation crosslinking of UHMWPE has been shown to decrease wear. However, the resulting polymer (crosslinked-PE) has a high free radical content. Two different methods that have been used to reduce the remaining free radicals are mechanical annealing and chemical stabilization using Vitamin E, a free radical scavenger. The primary purpose of the current study was to evaluate and compare the wear properties of vitamin E-doped crosslinked-PE (VEPE) and one formulation of mechanically annealed crosslinked-PE using
This was a safety study where the hypothesis was that the newer-design CPCS femoral stem would demonstrate similar early clinical results and micromovement to the well-established Exeter stem. Both are collarless, tapered, polished cemented stems, the only difference being a slight lateral to medial taper with the CPCS stem. A total of 34 patients were enrolled in a single-blinded randomised controlled trial in which 17 patients received a dedicated radiostereometric CPCS stem and 17 a radiostereometric Exeter stem. No difference was found in any of the outcome measures pre-operatively or post-operatively between groups. At two years, the mean subsidence for the CPCS stem was nearly half that seen for the Exeter stem (0.77 mm (−0.943 to 1.77) and 1.25 mm (0.719 to 1.625), respectively; p = 0.032). In contrast, the mean internal rotation of the CPCS stem was approximately twice that of the Exeter (1.61° (−1.07° to 4.33°) and 0.59° (0.97° to 1.64°), respectively; p = 0.048). Other migration patterns were not significantly different between the stems. The subtle differences in designs may explain the different patterns of migration. Comparable migration with the Exeter stem suggests that the CPCS design will perform well in the long term.
The primary purpose of the current study was to evaluate and compare the wear properties of vitamin E-doped, highly-crosslinked PE (VEPE) and one formulation of moderately cross-linked and mechanically-annealed ultra-high molecular weight PE (ModXLPE) in patients five years after primary THA. We also sought to understand whether polyethylene wear is associated with radiographic evidence of bone resorption or with deterioration in patient-reported outcome measures (PROMs). A total of 221 patients from four international centers were recruited into a prospective RSA and clinical outcomes study. Seventy percent (76%) of patients received VEPE (vs. ModXLPE) liners, and 36% received ceramic (vs. metal) femoral heads. PROMs and radiographs were collected preoperatively and at one, two, and five years postoperatively. In addition, RSA radiographs were collected to measure PE wear. We observed similar bedding in through the one-year interval and wear through the two-year interval between the two liner types. However, there was significantly more femoral head penetration in the ModXLPE cohort compared to the VEPE cohort at the five-year follow-up (p<0.001). The only variables independently predictive of increased wear were ModXLPE (vs VEPE) liner type (β=0.22, p=0.010) and metal (vs. ceramic) femoral head type (β=0.21, p=0.013). There was no association between increased wear and radiolucency development (p=0.866) or PROMs. No patients were found to have evidence of osteolysis. At five-years postoperatively, patients treated with VEPE (vs. ModXLPE) and ceramic (vs. metal) femoral heads demonstrated decreased wear. At the longest follow-up (five years postoperatively), the wear rates for both liner groups were very low and have not led to any osteolysis or implant failures via aseptic loosening.
We evaluated an anatomical uncemented stem, SP-CL, (Static Physiologicus – CementLess) designed to facilitate insertion and to avoid stress concentration at solitary contact points in a randomized controlled trial, with use of the Corail stem as control. The SPÅ-Cl stem has been on the market since 2014 but is still not well documented. 79 patients (80 hips) were primarily recruited and 71 patients (72 hips, 36 SP-CL, 36 Corail) attended the last follow up at 2 years. The clinical evaluation included several types of PROMs with Oxford Hip Score (OHS) as primary outcome. In addition, repeated measurements of stem migration, changes in bone mineral density and development of radiolucencies were studied with RSA, DXA and conventional radiography. At two years the Oxford Hip Score did not differ between the SP-CL and Corail stem (estimated mean difference: −0.70 (95% CI: −4.28 – 2.89). In both groups Oxford hip score had almost doubled at 3 months, continued to increase up to 6 months and was about equal at 2 years (SP-CL; median 46 (17–48), Corail; median 47 (19–48)). At 2 years the SP-CL stems showed a median distal migration of −0.23 (−5.2 – 0.1) and the Corail stems of − 0.11 (−4.4 – 0.4). The SP-CL stems showed slightly more loss of bone mineral density in Gruen region 7 (p = 0.003). We found no difference in clinical results with use of either of the two stems. Bone mineral density loss tended to be higher with use of the SP-CL stem and the early subsidence tended to be more pronounced, which turned out to be compatible with about the same stem stability reached between 1 and 2 years. As a next step we think that the SP-CL stem should be studied in a multi-center setting, before accepted for general use.
Acetabular components used to treat large defects are at greater risk of loosening. Porous tantalum acetabular components have reported the most promising early to midterm revision rates. Early stability of acetabular components used at revision THR was shown to be a good predictor of later loosening. The primary aim was to assess the migration of porous acetabular component used to reconstruct severe acetabular defects. Secondarily, we investigated the effect of acetabular defect severity and type of component fixation on migration. Radiosterometric analysis was used to measure migration at a mean follow-up of four years, (range 2–10) in 59 reconstructions of severe acetabular defects with porous tantalum components. Acetabular component fixation was classified as superior if augmented with screws through cup, augments or cage in the ilium only. Fixation was classified as combined, superior and inferior, if flanges and/or screws were also placed in the ischium and or pubis. Acceptable limits of proximal migration were defined as ≤1mm within 2 years and ≤2.5mm at any time point. Eight hips had reconstruction of Paprosky II defects with superior fixation only. The mean proximal migration of the eight acetabular components was 0.25mm (0.08–0.40) at 2 years and 0.29mm (0.10–0.81) at last follow-up. Fifty-one hips had reconstruction of Paprosky III defects. Seven of these reconstructions exceeded the migration thresholds. Five reconstructions (four with superior fixation and one cup cage construct with no inferior screw fixation) of hips with pelvic discontinuity developed pain and were re-revised for loosening. Two reconstructions are asymptomatic and migrated 2.68mm (cup-cage construct with superior screws) and 2.86mm (no pelvic discontinuity, superior fixation) at final follow-up. The mean proximal migration of the 51 Paprosky III reconstructions was 0.99mm (0.03 to 16.4) at 2 years and 1.92mm (0.01 to 29.4) at last follow-up. The mean proximal translation at 2 years of the 11 reconstructions with inferior screw fixation was 0.2mm (−0.6 to 0.7mm), compared with 0.9mm (−0.6 to 16.4mm) for the reconstructions without inferior screw fixation. In conclusion, when used to reconstruct Paprosky II defects, porous tantalum acetabular components provide component stability similar to a good performing primary THR. These implants achieve adequate stability when used to treat Paprosky III defects, including those with pelvic discontinuity. For the most severe defects, combined fixation with inferior screws is recommended, particularly when reconstructing hips with pelvic discontinuity.
Aims. Refobacin Bone Cement R and Palacos R + G bone cement were introduced to replace the original cement Refobacin Palacos R in 2005. Both cements were assumed to behave in a biomechanically similar fashion to the original cement. The primary aim of this study was to compare the migration of a polished triple-tapered femoral stem fixed with either Refobacin Bone Cement R or Palacos R + G bone cement. Repeated
Aims.
Aims. The Exeter short stem was designed for patients with Dorr type A femora and short-term results are promising. The aim of this study was to evaluate the minimum five-year stem migration pattern of Exeter short stems in comparison with Exeter standard stems. Methods. In this case-control study, 25 patients (22 female) at mean age of 78 years (70 to 89) received cemented Exeter short stem (case group). Cases were selected based on Dorr type A femora and matched first by Dorr type A and then age to a control cohort of 21 patients (11 female) at mean age of 74 years (70 to 89) who received with cemented Exeter standard stems (control group). Preoperatively, all patients had primary hip osteoarthritis and no osteoporosis as confirmed by dual X-ray absorptiometry scanning. Patients were followed with
Aims. Although the Fitmore Hip Stem has been on the market for almost 15 years, it is still not well documented in randomized controlled trials. This study compares the Fitmore stem with the CementLeSs (CLS) in several different clinical and radiological aspects. The hypothesis is that there will be no difference in outcome between stems. Methods. In total, 44 patients with bilateral hip osteoarthritis were recruited from the outpatient clinic at a single tertiary orthopaedic centre. The patients were operated with bilateral one-stage total hip arthroplasty. The most painful hip was randomized to either Fitmore or CLS femoral component; the second hip was operated with the femoral component not used on the first side. Patients were evaluated at three and six months and at one, two, and five years postoperatively with patient-reported outcome measures,
Aims. BoneMaster is a thin electrochemically applied hydroxyapatite (HA) coating for orthopaedic implants that is quickly resorbed during osseointegration. Early stabilization is a surrogacy marker of good survival of femoral stems. The hypothesis of this study was that a BoneMaster coating yields a fast early and lasting fixation of stems. Methods. A total of 53 patients were randomized to be treated using Bi-Metric cementless femoral stems with either only a porous titanium plasma-sprayed coating (P group) or a porous titanium plasma-sprayed coating with an additional BoneMaster coating (PBM group). The patients were examined with
Aims. The aim of this study was to compare the mid-term patient-reported outcome, bone remodelling, and migration of a short stem (Collum Femoris Preserving; CFP) with a conventional uncemented stem (Corail). Methods. Of 81 patients who were initially enrolled, 71 were available at five years’ follow-up. The outcomes at two years have previously been reported. The primary outcome measure was the clinical result assessed using the Oxford Hip Score (OHS). Secondary outcomes were the migration of the stem, measured using