Advertisement for orthosearch.org.uk
Results 1 - 20 of 538
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 102 - 102
1 Dec 2020
Chen J Ahmed A Ackermann P
Full Access

Growth factors are reported to play an important role in healing after acute Achilles tendon rupture (ATR). However, the association between growth factors and patient outcome has not been investigated previously. The aim of this retrospective study is to identify growth factors and related proteins which can be used as predictors of healing after ATR, ethical approval was obtained from the Regional Ethical Review Committees in Sweden and followed the guidelines of the Declaration of Helsinki. The study included 28 surgically treated patients (mean age 39.11 ± 8.38 yrs) with acute ATR. Healing was assessed by microdialysate two weeks after the surgery and performed on both injured and contralateral un-injured leg. The microdialysates were analyzed by proteomics based on mass spectrometry (MS) to detect growth factor expressions in ATR patients. One year after the surgery, healing outcomes were evaluated by patient-reported Achilles tendon Total Rupture Score (ATRS), Foot and Ankle Outcome Score (FAOS), and functional outcomes by heel-rise test.

A total of 1549 proteins were detected in the microdialysates of which 20 growth factor/ related proteins were identified. 7 of these were significantly up-regulated (IGFBP2, Fold change (FC) = 4.07, P = 0.0036; IGFBP4, FC = 3.06, P = 0.009; CTGF, FC = 15.83, P = 0.003; HDGF, FC = 4.58, P = 0.003; GRB2, FC = 14.8, P = 0.0004; LTBP1, FC = 12.08, P = 0.0008; TGFBI, FC = 5.54, P = 0.001) and 1 down-regulated (IGFBP6) in the injured compared to the contralateral healthy side. Linear regression analysis revealed that TGFB1 was positively associated with improved ATRS (r = 0.585, P = 0.04) as well to ATRS subscales: less limitation in running (r = 0.72, P = 0.004), less jumping limitation (r = 0.764, P = 0.001) and less limitation caused by decreased tendon strength (r = 0.665, P = 0.012). Interestingly, all 7 up-regulated proteins were positively associated with less jumping limitations (IGFBP2, r = 0.667, P = 0.015; IGFBP4, r = 0.675, P = 0.013; CTGF, r = 0.668, P = 0.015; HDGF, r = 0.672, P = 0.014; GRB2, r = 0.665, P = 0.016; LTBP1, r = 0.663, P = 0,016). No associations were observed among any of the growth factor and FAOS or patient's functional outcomes.

We conclude that growth factors and related proteins play a crucial role in ATR healing. More specifically, TGFB1 may be used as prognostic biomarker of the patient-reported outcome 1-year post-surgery. These results may be used to develop more specific treatments to improve ATR healing.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 28 - 28
4 Apr 2023
Bolam S Park Y Konar S Callon K Workman J Monk P Coleman B Cornish J Vickers M Munro J Musson D
Full Access

Obesity is associated with poor outcomes and increased risk of failure after rotator cuff (RC) repair surgery. The effect of diet-induced obesity (DIO) on enthesis healing has not been well characterised and whether its effects can be reversed with dietary intervention is unknown. We hypothesised that DIO would result in inferior enthesis healing in a rat model of RC repair and that dietary intervention in the peri-operative period would improve enthesis healing. A total of 78 male Sprague-Dawley rats were divided into three weight-matched groups from weaning and fed either: control diet (CD), high-fat diet (HFD), or HFD until surgery, then CD thereafter (HF-CD). After 12 weeks the left supraspinatus tendon was detached, followed by immediate surgical repair. At 2 and 12 weeks post-surgery, animals were cullers and RCs harvested for biomechanical and histological evaluation. Body composition and metabolic markers were assessed via DEXA and plasma analyses, respectively. DIO was established in the HFD and HF-CD groups prior to surgery, and subsequently reversed in the HF-CD group after surgery. At 12 weeks post-surgery, plasma leptin concentrations were higher in the HFD group compared to the CD group (5.28 vs. 2.91ng/ml, P=0.003). Histologically, the appearance of the repaired entheses was poorer in both the HFD and HF-CD compared to the CD group at 12 weeks (overall histological score 6.20 (P=0.008), 4.98 (P=0.001) and 8.68 out of 15, respectively). The repaired entheses in the HF-CD group had significantly lower (26.4 N, P=0.028) load-at-failure 12 weeks post-surgery compared to the CD group (34.4 N); while the HFD group was low, but not significantly different (28.1 N, P=0.096). Body mass at the time of surgery, plasma leptin and body fat percentage were negatively correlated with histological scores and plasma leptin with load-at-failure 12 weeks post-surgery. DIO impaired enthesis healing in this rat RC repair model, with inferior biomechanical and histological outcomes. Restoring normal weight with dietary change after surgery did not improve healing outcomes. Exploring interventions that improve the metabolic state of obese patients and counselling patients appropriately about their modest expectations after repair should be considered


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 32 - 32
2 Jan 2024
Traweger A
Full Access

Approximately 30% of general practice consultations for musculoskeletal pain are related to tendon disorders, causing substantial personal suffering and enormous related healthcare costs. Treatments are often prone to long rehabilitation times, incomplete functional recovery, and secondary complications following surgical repair. Overall, due to their hypocellular and hypovascular nature, the regenerative capacity of tendons is very poor and intrinsically a disorganized scar tissue with inferior biomechanical properties forms after injury. Therefore, advanced therapeutic modalities need to be developed to enable functional tissue regeneration within a degenerative environment, moving beyond pure mechanical repair and overcoming the natural biological limits of tendon healing. Our recent studies have focused on developing biologically augmented treatment strategies for tendon injuries, aiming at restoring a physiological microenvironment and boosting endogenous tissue repair. Along these lines, we have demonstrated that the local application of mesenchymal stromal cell-derived small extracellular vesicles (sEVs) has the potential to improve rotator cuff tendon repair by modulating local inflammation and reduce fibrotic scarring. In another approach, we investigated if the local delivery of the tendon ECM protein SPARC, which we previously demonstrated to be essential for tendon maturation and tissue homeostasis, has the potential to enhance tendon healing. Finally, I will present results demonstrating the utility of nanoparticle-delivered, chemically modified mRNAs (cmRNA) to improve tendon repair


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 39 - 39
4 Apr 2023
Lim W Lie D Chou S Lie H Yew A
Full Access

This study aims to investigate the mechanical properties of a rotator cuff tear repaired with a polypropylene interposition graft in an ovine infraspinatus ex-vivo model. Twenty fresh shoulders from skeletally mature sheep were used in this study. A tear size of 20 mm from the tendon joint was created in the infraspinatus tendon to simulate a large tear in fifteen specimens. This was repaired with a polypropylene mesh used as an interposition graft between the ends of the tendon. Eight specimens were secured with mattress stitches while seven were secured to the remnant tendon on the greater tuberosity side by continuous stitching. Remaining five specimens with an intact tendon served as a control group. All specimens underwent cyclic loading with a universal testing machine to determine the ultimate failure load and gap distance. Gap distance increased with progressive cyclic loading through 3000 cycles for all repaired specimens. Mean gap distance after 3000 cycles for both continuous and mattress groups are 1.7 mm and 4.2 mm respectively (P = .001). Significantly higher mean ultimate failure load was also observed with 549.2 N in the continuous group, 426.6 N in the mattress group and 370 N in the intact group. The use of a polypropylene mesh as an interposition graft for large irreparable rotator cuff tears is biomechanically suitable and results in a robust repair that is comparable to an intact rotator cuff tendon. When paired with a continuous suturing technique, it demonstrates significantly resultant superior biomechanical properties that may potentially reduce re-tear rates after repairing large or massive rotator cuff tears


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 11 - 11
1 Dec 2022
Bergomi A Adriani M De Filippo F Manni F Motta M Saccomanno M Milano G
Full Access

Rotator cuff repair has excellent clinical outcomes but continues to be a challenge when it comes to large and massive tears as well as revision procedures. Reported symptomatic retear rates are still too high to be acceptable. The purpose of the present study was to evaluate the effectiveness of a combination of augmentation techniques consisting of microfractures of the greater tuberosity, extracellular matrix (ECM) patch graft and subsequent platelet concentrate (PC) subacromial injections in revision rotator cuff repair. The study was designed as a retrospective comparative study on prospectively collected data from a consecutive cohort of patients. All patients who underwent arthroscopic revision rotator cuff repair for symptomatic failure of previous posterosuperior rotator cuff repair were considered eligible for the study. Symptomatic failure had been diagnosed according to clinical examination and confirmed by magnetic resonance imaging (MRI). Structural integrity had been assessed on MRI and classified according to Sugaya classification. Only patients affected by stage IV-V were considered eligible. Tear reparability was confirmed during arthroscopy. Only patients with a minimum 2 years follow-up were included. Patients were divided in two groups. In group 1 (control group) a standard arthroscopic revision and microfractures of the greater tuberosity were performed; in group 2 (experimental group), microfractures of the greater tuberosity and a ECM patch graft were used to enhance tendon repair, followed by postoperative PC injections. Minimum follow-up was 12 months. Primary outcome was the Constant-Murley score (CMS) normalized for age and gender. Subjective outcome was assessed with the Disabilities of the Arm, Shoulder and Hand (DASH) score in its short version (Quick-DASH). Tendon integrity was assessed with MRI at 6 months after surgery. Comparison between groups for all discrete variables at baseline and at follow-up was carried out with the Student's t-test for normally distributed data, otherwise Mann-Whitney U-test was used. Within-group differences (baseline vs follow-up) for discrete variables were analyzed by paired t-test, or by Wilcoxon signed-rank test in case of data with non-normal distribution. Differences for categorical variables were assessed by chi-squared test. Significance was considered for p values < 0.05. Forty patients were included in the study (20 patients for each group). The mean follow-up was 13 ± 1.6 months. No patients were lost at the follow up. Comparison between groups did not show significant differences for baseline characteristics. At follow-up, mean CMS was 80.7 ± 16.6 points in group 1 and 91.5 ± 11.5 points in group 2 (p= 0.022). Mean DASH score was 28.6 ± 21.6 points in group 1 and 20.1 ± 17.4 points in group 2 (p= 0.178). Post-operative MRI showed 6 healed shoulders in Group 1 and 16 healed shoulders in Group 2 (p<0.004). No postoperative complications were reported in both groups. The combination of microfractures of the greater tuberosity, ECM patch graft, and subsequent PC subacromial injections is an effective strategy in improving tendon healing rate


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 80 - 80
11 Apr 2023
Oliveira J Simões J Noronha J Ramos A
Full Access

Validation of a new meniscal root repair technique that will be biomechanically superior to current gold standard procedures and, at the same time, will allow controlled adjustable fixation. Medial and lateral meniscus from 10 porcine knees were collected. An iatrogenic posterior root tear was created and a single transosseous tibial tunnel technique that closely replicates the repair procedure with a 2-mm-wide-knottable braided tape was performed. Randomly, in one group (A) two simple cinch stitch were applied to suture the posterior root of the meniscus and, in the other group (B), a simple stich that holds the meniscus in two points in a crosse match configuration was used. For final fixation, alternating surgeon's knots (A group) and a doubled suture knot that allows an adjustable fixation were used (B group). All repairs were standardized for location and the repair stiches were placed in the body of the meniscus. The new suture configuration (B group) showed a better biomechanical performance in terms of load for both the medial [151,0-560,3] 306,9±173,8N and the lateral posterior root fixation [268,2-463,1] 347,4±74,3N in comparison to the cinch stitch (A group) [219,0-365,2] 268,9±58,7N and [219,0-413,6] 318,0±72N. The maximum stiffness was also higher for the new tested suture configuration (B group) for both the medial meniscus [10,6-34,5] 18,9±9,2N/mm vs [7,1-12,7] 10,9±2,2N/mm and the lateral meniscus [16,0-27,9] 21,6±5,5N/mm vs [7,6-15,6] 12,6±3,5N/mm. The presented new meniscal root repair is biomechanically superior to current gold standard techniques, as the cinch stich made with tape, keeping the simplicity and reproducibility of the procedure and, at the same time, is economically advantageous since a single tape in needed and allows adjustable fixation of the repair over a button


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 136 - 136
2 Jan 2024
Seah M Birch M Moutsopoulos I Mohorianu I McCaskie A
Full Access

Despite osteoarthritis (OA) representing a large burden for healthcare systems, there remains no effective intervention capable of regenerating the damaged cartilage in OA. Mesenchymal stromal cells (MSCs) are adult-derived, multipotent cells which are a candidate for musculoskeletal cell therapy. However, their precise mechanism of action remains poorly understood. The effects of an intra-articular injection of human bone-marrow derived MSCs into a knee osteochondral injury model were investigated in C57Bl/6 mice. The cell therapy was retrieved at different time points and single cell RNA sequencing was performed to elucidate the transcriptomic changes relevant to driving tissue repair. Mass cytometry was also used to study changes in the mouse immune cell populations during repair. Histological assessment reveals that MSC treatment is associated with improved tissue repair in C57Bl/6 mice. Single cell analysis of retrieved human MSCs showed spatial and temporal transcriptional heterogeneity between the repair tissue (in the epiphysis) and synovial tissue. A transcriptomic map has emerged of some of the distinct genes and pathways enriched in human MSCs isolated from different tissues following osteochondral injury. Several MSC subpopulations have been identified, including proliferative and reparative subpopulations at both 7 days and 28 days after injury. Supported by the mass cytometry results, the immunomodulatory role of MSCs was further emphasised, as MSC therapy was associated with the induction of increased numbers of regulatory T cells correlating with enhanced repair in the mouse knee. The transcriptomes of a retrieved MSC therapy were studied for the first time. An important barrier to the translation of MSC therapies is a lack of understanding of their heterogeneity, and the consequent lack of precision in its use. MSC subpopulations with different functional roles may be implicated in the different phases of tissue repair and this work offers further insights into repair process


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 39 - 39
17 Apr 2023
Saiz A O'Donnell E Kellam P Cleary C Moore X Schultz B Mayer R Amin A Gary J Eastman J Routt M
Full Access

Determine the infection risk of nonoperative versus operative repair of extraperitoneal bladder ruptures in patients with pelvic ring injuries. Pelvic ring injuries with extraperitoneal bladder ruptures were identified from a prospective trauma registry at two level 1 trauma centers from 2014 to 2020. Patients, injuries, treatments, and complications were reviewed. Using Fisher's exact test with significance at P value < 0.05, associations between injury treatment and outcomes were determined. Of the 1127 patients with pelvic ring injuries, 68 (6%) had a concomitant extraperitoneal bladder rupture. All patients received IV antibiotics for an average of 2.5 days. A suprapubic catheter was placed in 4 patients. Bladder repairs were performed in 55 (81%) patients, 28 of those simultaneous with ORIF anterior pelvic ring. The other 27 bladder repair patients underwent initial ex-lap with bladder repair and on average had pelvic fixation 2.2 days later. Nonoperative management of bladder rupture with prolonged Foley catheterization was used in 13 patients. Improved fracture reduction was noted in the ORIF cohort compared to the closed reduction external fixation cohort (P = 0.04). There were 5 (7%) deep infections. Deep infection was associated with nonoperative management of bladder rupture (P = 0.003) and use of a suprapubic catheter (P = 0.02). Not repairing the bladder increased odds of infection 17-fold compared to repair (OR 16.9, 95% CI 1.75 – 164, P = 0.01). Operative repair of extraperitoneal bladder ruptures substantially decreases risk of infection in patients with pelvic ring injuries. ORIF of anterior pelvic ring does not increase risk of infection and results in better reductions compared to closed reduction. Suprapubic catheters should be avoided if possible due to increased infection risk later. Treatment algorithms for pelvic ring injuries with extraperitoneal bladder ruptures should recommend early bladder repair and emphasize anterior pelvic ORIF


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 2 - 2
11 Apr 2023
Kronenberg D Everding J Moali C Legoff S Stange R
Full Access

BMP-1 is the major procollagen-C-peptidase activating, besides fibrillar collagen types I-III, several enzymes and growth factors involved in the generation of extracellular matrix. This study investigated the effect of adding and inhibiting BMP-1 directly post fracture. Standardised femoral fractures were stabilized by an intramedullary nail in 12 week-old female C57Bl/6J mice. We injected either 20 µL recombinant active BMP-1, activity buffer or the BMP-1 specific inhibitor “sizzled”. After 7, 14 and 28 days, mice were sacrificed. Femurs were dissected and paraffin slides were prepared. Callus composition was divided into soft tissue, mineralized and cartilaginous callus. Murine MC3T3 pre-osteoblastic cells were kept in culture adding BMP-1 and sizzled during osteoblastic differentiation. Putative cytotoxicity was determined using MTT-vitality assay. Cell calcification, collagen deposition, and BMP-2 and myostatin protein quantity were characterized. Adding BMP-1 displayed a weak positive effect on the outcome. After 7 days, more mineralised callus was present, meanwhile the cartilaginous callus was apparently remodelled at higher rate. In the case of BMP-1 inhibition, we observed more cartilaginous callus, which may indicate reduced stability. In cell culture, we could observe a high interference with mineralisation capabilities depending on the stage of osteoblastic development when adding BMP-1 or inhibiting it. Addition and inhibition impaired myostatin (anti-osteogen) and BMP-2 (pro-osteogen) expression. Interfering with BMP-1 homeostasis in this early stage of fracture repair seems to have rather negative effects. Inhibition apparently yields lower callus quality while the addition of BMP-1 does not significantly accelerate the healing outcome. Cell culture experiments show that BMP-1 application after 7 days of healing leads to higher collagen output but has no effect on mineralisation. This may suggest that BMP-1 application at a later time-point may lead to more pronounced beneficial effects on fracture repair


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 68 - 68
11 Apr 2023
Turnbull G Picard F Clarke J Shu W
Full Access

As arthroplasty demand grows worldwide, the need for a novel cost-effective treatment option for articular cartilage (AC) defects tailored to individual patients has never been greater. 3D bioprinting can deposit patient cells and other biomaterials in user-defined patterns to build tissue constructs from the “bottom-up,” potentially offering a new treatment for AC defects. The aim of this research was to create bioinks that can be injected or 3D bioprinted to aid osteochondral defect repair using human cells. Novel composite bioinks were created by mixing different ratios of methacrylated alginate (AlgMA) with methacrylated gelatin (GelMA). Chondrocytes or mesenchymal stem cells (MSCs) were then encapsulated in the bioinks and 3D bioprinted using a custom-built extrusion bioprinter. UV and double-ionic (BaCl2 and CaCl2) crosslinking was deployed following bioprinting to strengthen bioink stability in culture. Chondrocyte and MSC spheroids were also produced via 3D culture and then bioprinted to accelerate cell growth and development of ECM in bioprinted constructs. Excellent viability of chondrocytes and MSCs was seen following bioprinting (>95%) and maintained in culture over 28 days, with accelerated cell growth seen with inclusion of MSC or chondrocyte spheroids in bioinks (p<0.05). Bioprinted 10mm diameter constructs maintained shape in culture over 28 days, whilst construct degradation rates and mechanical properties were improved with addition of AlgMA (p<0.05). Composite bioinks were also injected into in vitro osteochondral defects (OCDs) and crosslinked in situ, with maintained cell viability and repair of osteochondral defects seen over a 14-day period. In conclusion we developed novel composite AlgMA/GelMA bioinks that can be triple-crosslinked, facilitating dense chondrocyte and MSC growth in constructs following 3D bioprinting. The bioink can be injected or 3D bioprinted to successfully repair in vitro OCDs, offering hope for a new approach to treating AC defects


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 108 - 108
11 Apr 2023
Turnbull G Picard F Clarke J Li B Shu W
Full Access

As arthroplasty demand grows worldwide, the need for a novel cost-effective treatment option for articular cartilage (AC) defects tailored to individual patients has never been greater. 3D bioprinting can deposit patient cells and other biomaterials in user-defined patterns to build tissue constructs from the “bottom-up,” potentially offering a new treatment for AC defects. The aim of this research was to create bioinks that can be injected or 3D bioprinted to aid osteochondral defect repair using human cells. Novel composite bioinks were created by mixing different ratios of methacrylated alginate (AlgMA) with methacrylated gelatin (GelMA). Chondrocytes or mesenchymal stem cells (MSCs) were then encapsulated in the bioinks and 3D bioprinted using a custom-built extrusion bioprinter. UV and double-ionic (BaCl2 and CaCl2) crosslinking was deployed following bioprinting to strengthen bioink stability in culture. Chondrocyte and MSC spheroids were also bioprinted to accelerate cell growth and development of ECM in bioprinted constructs. Excellent viability of chondrocytes and MSCs was seen following bioprinting (>95%) and maintained in culture over 28 days, with accelerated cell growth seen with inclusion of MSC or chondrocyte spheroids in bioinks (p<0.05). Bioprinted 10mm diameter constructs maintained shape in culture over 28 days, whilst construct degradation rates and mechanical properties were improved with addition of AlgMA (p<0.05). Composite bioinks were also injected into in vitro osteochondral defects (OCDs) and crosslinked in situ, with maintained cell viability and repair of osteochondral defects seen over a 14-day period. In conclusion we developed novel composite AlgMA/GelMA bioinks that can be triple-crosslinked, facilitating dense chondrocyte and MSC growth in constructs following 3D bioprinting. The bioink can be injected or 3D bioprinted to successfully repair in vitro OCDs, offering hope for a new approach to treating AC defects


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 6 - 6
1 Dec 2022
Roversi G Nusiner F De Filippo F Rizzo A Colosio A Saccomanno M Milano G
Full Access

Recent studies on animal models focused on the effect of preserving tendon remnant of rotator cuff on tendon healing. A positive effect by combining tendon remnant preservation and small bone vents on the greater tuberosity in comparison with standard tendon-to-bone repair has been shown. The purpose of the present clinical study was to evaluate the efficacy of biologic augmentation of arthroscopic rotator cuff repair by maintaining tendon remnant on rotator cuff footprint combined with small bone vents of the greater tuberosity. A retrospective study was conducted. All patients who underwent arthroscopic rotator cuff repair associated with small bone vents (nanofractures) and tendon footprint preservation were considered eligible for the study. Inclusion criteria were: diagnosis of full-thickness rotator cuff tear as diagnosed at preoperative magnetic resonance imaging (MRI) and confirmed at the time of surgery; minimum 24-month of follow-up and availability of post-operative MRI performed not earlier than 6 months after surgery. Exclusion criteria were: partial thickness tears, irreparable tears, capsulo-labral pathologies, calcific tendonitis, gleno-humeral osteoarthritis and/or previous surgery. Primary outcome was the ASES score. Secondary outcomes were: Quick-DASH and WORC scores, and structural integrity of repaired tendons by magnetic resonance imaging (MRI) performed six months after surgery. A paired t-test was used to compare pre- and postoperative clinical outcomes. Subgroup analysis was performed according to tear size. Significance was set at p < 0.05. The study included 29 patients (M:F = 15:14). Mean age (+ SD) of patients was 61.7 + 8.9 years. Mean follow-up was 27.4 ± 2.3 months. Comparison between pre- and postoperative functional scores showed significant clinical improvement (p < 0.001). Subgroup analysis for tear size showed significant differences in the QuickDASH score (0.04). Particularly, a significant difference in the QuickDASH score could be detected between medium and large tears (p=0.008) as well as medium and massive lesions (p=0.04). No differences could be detected between large and massive tears (p= 0.35). Postoperative imaging showed healed tendons in 21 out of 29 (72%) cases. Preservation of tendon remnant combined with small bone vents in the repair of medium-to-massive full-thickness rotator cuff tears provided significant improvement in clinical outcome compared to baseline conditions with complete structural integrity in 72% of the cases


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 91 - 91
2 Jan 2024
Graça A Rodrigues M Domingues R Gomes M Gomez-Florit M
Full Access

Macrophages play a critical role in innate immunity by promoting or inhibiting tissue inflammation and repair. Classically, macrophages can differentiate into either pro-inflammatory (M1) or pro-reparative (M2) phenotypes in response to various stimuli. Therefore, this study aimed to address how extracellular vesicles (EVs) derived from polarized macrophages can affect the inflammatory response of tendon cells. For that purpose, human THP-1 cells were stimulated with lipopolysaccharide (LPS), and interleukins -4 and -13 (IL- 4, IL-13), to induce macrophages polarization into M1, M2, and hybrid M1/M2 phenotypes. Subsequently, the EVs were isolated from the culture medium by ultracentrifugation. The impact of these nanovesicles on the inflammation and injury scenarios of human tendon-derived cells (hTDCs), which had previously been stimulated with interleukin- 1 beta (IL-1ß) to mimic an inflammatory scenario, was assessed. We were able to isolate three different nanovesicles populations, showing the typical shape, size and surface markers of EVs. By extensively analyzing the proteomic expression profiles of M1, M2, and M1/M2, distinct proteins that were upregulated in each type of macrophage-derived EVs were identified. Notably, most of the detected pro- inflammatory cytokines and chemokines had higher expression levels in M1-derived EVs and were mostly absent in M2-derived EVs. Hence, by acting as a biological cue, we observed that M2 macrophage-derived EVs increased the expression of the tendon-related marker tenomodulin (TNMD) and tended to reduce the presence of pro-inflammatory markers in hTDCs. Overall, these preliminary results show that EVs derived from polarized macrophages might be a potential tool to modulate the immune system responses becoming a valuable asset in the tendon repair and regeneration fields worthy to be further explored


We performed this systematic overview on the overlapping meta-analyses that analyzed autologous platelet-rich plasma (PRP) as an adjuvant in the repair of rotator cuff tears and identify the studies which provide the current best evidence on this subject and generate recommendations for the same. We conducted independent and duplicate electronic database searches in PubMed, Web of Science, Scopus, Embase, Cochrane Database of Systematic Reviews, and the Database of Abstracts of Reviews of Effects on September 8, 2021, to identify meta-analyses that analyzed the efficacy of PRP as an adjuvant in the repair of rotator cuff tears. Methodological quality assessment was made using Oxford Levels of Evidence, AMSTAR scoring, and AMSTAR 2 grades and used the Jadad decision algorithm to generate recommendations. 20 meta-analyses fulfilling the eligibility criteria were included. The AMSTAR scores of the included studies varied from 6–10 (mean:7.9). All the included studies had critically low reliability in their summary of results due to their methodological flaws according to AMSTAR 2 grades. The initial size of the tear and type of repair performed do not seem to affect the benefit of PRPs. Among the different preparations used, leucocyte poor (LP)-PRP possibly offers the greatest benefit as a biological augment in these situations. Based on this systematic overview, we give a Level II recommendation that intra-operative use of PRPs at the bone-tendon interface can augment the healing rate, reduce re-tears, enhance the functional outcomes and mitigate pain in patients undergoing arthroscopic rotator cuff repair


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 9 - 9
17 Apr 2023
Mortimer J Tamaddon M Liu C
Full Access

Rotator cuff tears are common, with failure rates of up to 94% for large and massive tears. 1. For such tears, reattachment of the musculotendinous unit back to bone is problematic, and any possible tendon-bone repair heals through scar tissue rather than the specially adapted native enthesis. We aim to develop and characterise a novel soft-hard tissue connector device, specific to repairing/bridging the tendon-bone injury in significant rotator cuff tears, employing decellularised animal bone partially demineralised at one end for soft tissue continuation. Optimisation samples of 15×10×5mm. 3. , trialled as separate cancellous and cortical bone samples, were cut from porcine femoral condyles and shafts, respectively. Samples underwent 1-week progressive stepwise decellularisation and a partial demineralisation process of half wax embedding and acid bathing. Characterisations were performed histologically for the presence/absence of cellular staining in both peripheral and central tissue areas (n=3 for each cortical/cancellous, test/PBS control and peripheral/central group), and with BioDent reference point indentation (RPI) for pre- and post-processing mechanical properties. Histology revealed absent cellular staining in peripheral and central cancellous samples, whilst reduced in cortical samples compared to controls. Cancellous samples decreased in wet mass after decellularisation by 45.3% (p<0.001). RPI measurements associated with toughness (total indentation depth, indentation depth increase) and elasticity (1st cycle unloading slope) showed no consistent changes after decellularisation. X-rays confirmed half wax embedding provided predictable control of the mineralised-demineralised interface position. Initial optimisation trials show proof-of-concept of a soft-hard hybrid scaffold as an immune compatible xenograft for irreparable rotator cuff tears. Decellularisation did not appreciably affect mechanical properties, and further biological, structural and chemical characterisations are underway to assess validity before in vivo animal trials and potential clinical translation


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 140 - 140
4 Apr 2023
Fry M Ren W Bou-Akl T Wu B Cizmic Z Markel D
Full Access

Extensor mechanism and abductor reconstructions in total joint arthroplasty are problematic. Growing tendon into a metallic implant would have great reconstructive advantages. With the introduction of porous metal implants, it was hoped that tendons could be directly attached to implants. However, the effects of the porous metal structure on tissue growth and pore penetration is unknown. In this rat model, we investigated the effect of pore size on tendon repair fixation using printed titanium implants with differing pore sizes. There were four groups of six Sprague Dawley rats (n = 28) plus control (n=4). Implants had pore sizes of 400µm (n=8), 700µm (n=8), and 1000µm (n=8). An Achilles tendon defect was created, and the implant positioned and sutured between the cut ends. Harvest occurred at 12-weeks. Half the specimens underwent tensile load to failure testing, the other half fixed and processed for hard tissue analysis. Average load to failure was 72.6N for controls (SD 10.04), 29.95N for 400µm (SD 17.95), 55.08N for 700µm (SD 13.47), and 63.08N for 1000µm (SD 1.87). The load to failure was generally better in the larger pore sizes. Histological evaluation showed that there was fibrous tendon tissue within and around the implant material, with collagen fibers organized in bundles. This increases as the pore diameter increases. Printing titanium implants allows for precise determination of pore size and structure. Our results showed that tendon repair utilizing implants with 700µm and 1000µm pores exhibited similar load to failure as controls. Using a defined pore structure at the attachment points of tendons to implants may allow predictable tendon to implant reconstruction at the time of revision arthroplasty


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 7 - 7
17 Apr 2023
Righelli L Gonçalves A Rodrigues M Gomes M El Haj A
Full Access

Tendons display poor intrinsic healing properties and are difficult to treat[1]. Prior in vitro studies[2] have shown that, by targeting the Activin A receptor with magnetic nanoparticles (MNPs), it is possible to remotely induce the tenogenic differentiation of human adipose stem cells (hASCs). In this study, we investigated the tenogenic regenerative potential of remotely-activated MNPs-labelled hASCs in an in vivo rat model. We consider the potential for magnetic controlled nanoparticle mediated tendon repair strategies. hASCs were labelled with 250 nm MNPs functionalized with anti-Activin Receptor IIA antibody. Using a rapid curing fibrin gel as delivery method, the MNPs-labelled cells were delivered into a Ø2 mm rat patellar tendon defect. The receptor was then remotely stimulated by exposing the rats to a variable magnetic gradient (1.28T), using a customised magnetic box. The stimulation was performed 1 hour/day, 3 days/week up to 8 weeks. Tenogenesis, iron deposition and collagen alignment were assessed by histological staining and IHC. Inflammation mediators levels were assessed by ELISA and IHC. The presence of human cells in tendons after 4 and 8 weeks was assessed by FISH analysis. Histological staining showed a more organised collagen arrangement in animals treated with MNPs-labelled cells compared to the controls. IHC showed positive expression of tenomodulin and scleraxis in the experimental groups. Immunostaining for CD45 and CD163 did not detect leukocytes locally, which is consistent with the non-significant levels of the inflammatory cytokines analysis performed on plasma. While no iron deposition was detected in the main organs or in plasma, the FISH analysis showed the presence of human donor cells in rat tendons even after 8 weeks from surgery. Our approach demonstrates in vivo proof of concept for remote control stem cell tendon repair which could ultimately provide injectable solutions for future treatment. We are grateful for ERC Advanced Grant support ERC No.789119, ERC CoG MagTendon No.772817 and FCT grant 2020.01157.CEECIND


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 12 - 12
1 Mar 2021
Merrild NG Holzmann V Grigoriadis A Gentleman E
Full Access

Abstract. Objective. Clinical treatments to repair articular cartilage (AC) defects such as autologous cartilage implantation (mosaicplasty) often suffer from poor integration with host tissue, limiting their long-term efficacy. Thus to ensure the longevity of AC repair, understanding natural repair mechanisms that allow for successful integration between cartilaginous surfaces, as has been reported in juvenile tissue, may be key. Here, we evaluated cartilage integration over time in a pig explant model of natural tissue repair by assessing expression and localisation of major ECM proteins, enzymatic cross-linkers including the five isoforms of lysyl oxidase (LOX), small leucine-rich repeat proteoglycans (SLRP's), and proteases (e.g. ADAMTS4). Methods. AC was retrieved from the femoral condyles of 8-week-old pigs. Full thickness 6mmØ AC discs were prepared, defects were induced, and explants cultured for up to 28 days. After fixation, sections were stained using Safranin-O and antibodies against Collagen types I & II, LOX, and ADAMTS4. Gene expression analyses were performed using qPCR. We also cultured devitalized samples, either with or without enzymatic treatment to deplete proteoglycans, for 28 days and similarly assessed repair. Results. Safranin-O staining demonstrated successful integration of cartilage defects over a 28-day period. No significant regulation in the expression of Col1a1, Col2a1, LOX or SLPR genes was observed at any time point. Immunofluorescence staining revealed that only ADAMTS4 localized at the injury surface in integrated samples. Interestingly, we also observed successful spontaneous integration of proteoglycan-depleted devitalized tissue. Conclusion. Cartilage integration in our pig cartilage explant model did not appear to be mediated by upregulation of major cartilage ECM components, enzymatic cross-linkers, or SLRPs. However, spontaneous integration of devitalized, proteoglycan-depleted AC, and localised upregulation of ADAMTS4 at the injured surface in successfully integrated samples, suggest that ADAMTS4 may enhances normal repair in injured AC through local aggrecan depletion, therefore enabling spontaneous cross-linking of collagen fibrils. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 22 - 22
4 Apr 2023
Souleiman F Zderic I Pastor T Gehweiler D Gueorguiev B Galie J Kent T Tomlinson M Schepers T Swords M
Full Access

The quest for optimal treatment of acute distal tibiofibular syndesmotic disruptions is still in full progress. Using suture-button repair devices is one of the dynamic stabilization options, however, they may not be always appropriate for stabilization of length-unstable syndesmotic injuries. Recently, a novel screw-suture repair system was developed to address such issues. The aim of this study was to investigate the performance of the novel screw-suture repair system in comparison to a suture-button stabilization of unstable syndesmotic injuries. Eight pairs of human cadaveric lower legs were CT scanned under 700 N single-leg axial loading in five foot positions – neutral, 15° external/internal rotation and 20° dorsi-/plantarflexion – in 3 different states: (1) pre-injured (intact); (2) injured, characterized by complete syndesmosis and deltoid ligaments cuts simulating pronation-eversion injury types III and IV, and supination-eversion injury type IV according to Lauge-Hansen; (3) reconstructed, using a screw-suture (FIBULINK, Group 1) or a suture-button (TightRope, Group 2) implants for syndesmotic stabilization, placed 20 mm proximal to the tibia plafond/joint surface. Following, all specimens were: (1) biomechanically tested over 5000 cycles under combined 1400 N axial and ±15° torsional loading; (2) rescanned. Clear space (diastasis), anterior tibiofibular distance, talar dome angle and fibular shortening were measured radiologically from CT scans. Anteroposterior, axial, mediolateral and torsional movements at the distal tibiofibular joint level were evaluated biomechanically via motion tracking. In each group clear space increased significantly after injury (p ≤ 0.004) and became significantly smaller in reconstructed compared with both pre-injured and injured states (p ≤ 0.041). In addition, after reconstruction it was significantly smaller in Group 1 compared to Group 2 (p < 0.001). Anteroposterior and axial movements were significantly smaller in Group 1 compared with Group 2 (p < 0.001). No further significant differences were detected between the groups (p ≥ 0.113). Conclusions. Although both implant systems demonstrate ability for stabilization of unstable syndesmotic injuries, the screw-suture reconstruction provides better anteroposterior translation and axial stability of the tibiofibular joint and maintains it over time under dynamic loading. Therefore, it could be considered as a valid option for treatment of syndesmotic disruptions


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 38 - 38
1 Dec 2021
Hopkins T Wright K Roberts S Jermin P Gallacher P Kuiper JH
Full Access

Abstract. Objectives. In the human knee, the cells of the articular cartilage (AC) and subchondral bone (SB) communicate via the secretion of biochemical factors. Chondrocyte-based AC repair strategies, such as articular chondrocyte implantation, are widely used but there has been little investigation into the communication between the native SB cells and the transplanted chondrocytes. We hypothesise that this communication depends on the health state of the SB and could influence the composition and quality of the repair cartilage. Methods. An indirect co-culture model was developed using transwell inserts, representing a chondrocyte/scaffold-construct for repair of AC defects adjoining SB with varying degrees of degeneration. Donor-matched populations of human bone-marrow derived mesenchymal stromal cells (BM-MSCs) were isolated from the macroscopically and histologically best and worst osteochondral tissue, representing “healthy” and “unhealthy” SB. The BM-MSCs were co-cultured with normal chondrocytes suspended in agarose, with the two cell types separated by a porous membrane. After 0, 7, 14 and 21 days, chondrocyte-agarose scaffolds were assessed by gene expression and biochemical analyses. Results. Matched healthy and unhealthy BM-MSCs from five patients undergoing knee arthroplasty (2 male, 3 female; 72.8±2.2. SD. years-old) were used, together with normal chondrocytes from a healthy patient (male; 24 years-old). At day 21, there was significantly more glycosaminoglycan per chondrocyte in the scaffolds co-cultured with healthy BM-MSCs (4.37×10. −4. μg/cell±2.69×10. −5. SEM. ) than in those cultured with unhealthy BM-MSCs (3.52×10. −4. μg/cell±2.19×10. −5. SEM. ; p<0.001). Co-culture with unhealthy BM-MSCs caused a difference in expression of COL2A1 (day 0–21 fold change; unhealthy:-32.8±12.9. SEM. ; healthy:-7.82±4.46. SEM. ; p<0.001) and ACAN (unhealthy:+1.51±0.51. SEM. ; healthy:+4.05±0.49. SEM. ; p=0.002). Conclusions. Co-culture with unhealthy BM-MSCs caused a reduction in GAG deposition and expression of genes encoding matrix-specific proteins, compared to culturing with healthy BM-MSCs. There are clinical implications for cell-based cartilage repair, where the health of the SB may influence the outcome of chondrocyte-based therapies