Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
Full Access

Abstract. Approximately 20% of primary and revision Total Knee Arthroplasty (TKA) patients require multiple revisions, which are associated with poor survivorship, with worsening outcomes for subsequent revisions. For revision surgery, either endoprosthetic replacements or metaphyseal sleeves can be used for the repair, however, in cases of severe defects that are deemed “too severe” for reconstruction, endoprosthetic replacement of the affected area is recommended. However, endoprosthetic replacements have been associated with high complication rates (high incidence rates of prosthetic joint infection), while metaphyseal sleeves have a more acceptable complication profile and are therefore preferred. Despite this, no guidance exists as to the maximal limit of bone loss, which is acceptable for the use of metaphyseal sleeves to ensure sufficient axial and rotational stability. Therefore, this study assessed the effect of increasing bone loss on the primary stability of the metaphyseal sleeve in the proximal tibia to determine the maximal bone loss that retains axial and rotational stability comparable to a no defect control. Methods. to determine the pattern of bone loss and the average defect size that corresponds to the clinically defined defect sizes of small, medium and large defects, a series of pre-operative x-rays of patients with who underwent revision TKA were retrospectively analysed. Ten tibiae sawbones were used for the experiment. To prepare the bones, the joint surface was resected the typical resection depth required during a primary TKA (10mm). Each tibia was secured distally in a metal pot with perpendicular screws to ensure rotational and axial fixation to the testing machine. Based on X-ray findings, a fine guide wire was placed 5mm below the cut joint surface in the most medial region of the plateau. Core drills (15mm, 25mm and 35mm) corresponding to small, medium and large defects were passed over the guide wire allowing to act at the centre point, before the bone defect was created. The test was carried out on a control specimen with no defect, and subsequently on a Sawbone with a small, medium or large defect. Sleeves were inserted using the published operative technique, by trained individual using standard instruments supplied by the manufacturers. Standard axial pull-out (0 – 10mm) force and torque (0 – 30°) tests were carried out, recording the force (N) vs. displacement (mm) curves. Results. A circular defect pattern was identified across all defects, with the centre of the defect located 5mm below the medial tibial base plate, and as medial as possible. Unlike with large defects, small and medium sized defects reduced the pull-out force and torque at the bone-implant interface, however, these reductions were not statistically significant when compared to no bony defect. Conclusions. This experimental study demonstrated that up to 35mm radial defects may be an acceptable “critical limit” for bone loss below which metaphyseal sleeve use may still be appropriate. Further clinical assessment may help to confirm the findings of this experimental study. This study is the first in the literature to aim to quantify “critical bone loss” limit in the tibia for revision knee arthroplasty. Declaration of Interest. (a) fully declare any financial or other potential conflict of interest


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 81 - 81
1 Mar 2021
Yaghmour KM Hossain F Konan S
Full Access

Abstract. Objective. In this systematic review we aim to compare wound complication rates from Negative Pressure Wound Therapy (NPWT) to dry sterile surgical dressings in primary and revision total knee arthroplasty (TKA). Methods. A search was performed using PubMed, Embase, Science Direct, and Cochrane Library. Eligible studies included those investigating the use of NPWT in primary and revision TKA. Exclusion criteria included studies investigating NPWT not related to primary or revision TKA; studies in which data relating to NPWT was not accessible; missing data; without an available full text, or not well reported. We also excluded studies with poor scientific methodology. All publications were limited to the English language. Abstracts, case reports, conference presentations, and reviews were excluded. Welch independent sample t-test was used for the statistical analysis. Results. Our review identified 11 studies evaluating 1,414 patients. Of the 1,181 primary TKA patients analysed (NPWT = 416, surgical dressing = 765), the overall wound complication rates in patients receiving NPWT ranged from 0% – 63% (Median 7.30%, SD ± 21.44) This is in comparison to complication rates of 2.8% – 19% (Median 6.50%, SD ± 6.59) in the dry dressing group. The difference in complication rates between the two groups was not statistically significant (p =0.337). In the revision TKA cohort of 279 patients (NPWT group = 128, dry dressing group = 151), the overall wound complication rates in the NPWT group ranged between 6.7% – 12% (Median 9.80%, SD ± 2.32) vs 23.8% – 30% (Median 26.95%, SD ± 2.53) in the dry dressing group. This difference was statistically significant (p<0.001). Conclusion. NPWT dressing demonstrated statistically significant reduction in wound complication rates when used in revision TKA but not primary TKA when compared to dry sterile dressings. This is probably due to higher wound related risks encountered with revision TKA surgery compared to primary TKA surgery. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 34 - 34
1 Jan 2019
Sehgal A Burnett R Howie C Simpson H Hamilton D
Full Access

Instability accounts for approximately 20% of revision total knee arthroplasty (TKA) operations, however, diagnostic tests remain relatively subjective. The aim of this examination was to evaluate the feasibility of using pressure mat analyses during functional tasks to identify abnormal biomechanics associated with TKA instability. Five patients (M = 4; age = 69.80±7.05 years; weight = 79.73±20.12 kg) with suspected TKA instability were examined compared to 10 healthy controls (M = 4; age = 44.6±7.52 years; weight = 70.80±14.65). Peak pressure and time parameters were measured during normal gait and two-minute bilateral stance. Side-to-side pressure distribution was calculated over 10-second intervals during the second minute. Mann-Whitney tests compared loading parameters between groups and side-to-side differences in TKA patients (significance level = p<0.05). Pressure distribution was expressed relative to bodyweight. Notable differences were seen during bilateral stance. Uneven side loading was greater – favouring the non-operated limb – in TKA patients during bilateral stance compared to controls. This was significantly different at 30s (p=0.0336) and 60s (p=0.0336). Gait analyses showed subtle pressure distribution differences in unstable TKA patients. Stance time was indifferent. TKA patients tended to exhibit longer heel contact time (0.76s vs. 0.64s and reduced weight acceptance (50.75% vs. 56.75%) on the operated limb compared to the non-operated limb. Side-to-side differences in peak toe-off forces were significantly more pronounced in TKA patients versus controls (9.25% +/− 1.5% vs. 1.67% +/−5.79%; p=0.0039). Conclusion: This feasibility work demonstrates subtle differences in limb loading mechanics during simple clinical tests in unstable TKA patients that might be invisible to the naked eye. In the long-term, pressure analyses may be a useful diagnostic tool in identifying patients that would benefit from revision surgery for TKA instability


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 65 - 65
1 Nov 2018
Sehgal A Burnett R Howie C Simpson H Hamilton D
Full Access

Instability accounts for approximately 20% of all revision total knee arthroplasty (TKA), however diagnostic tests remain crude and subjective. The aim of this examination was to evaluate the feasibility of pressure mat (SB Mat, TekScan) analyses of functional tasks to differentiate instability in a clinical setting. Five patients (M = 4; age = 69.80±7.05 years; weight = 79.73±20.12 kg) with suspected TKA instability were examined compared to five healthy controls (M = 1; age = 46.80±7.85 years; weight = 71.54±16.17 kg). Peak pressure and time parameters were measured during normal gait and two-minute bilateral stance. Side-to-side pressure distribution was calculated over 10-second intervals during the second minute. Pressure distributions were expressed relative to bodyweight (%BW). T-tests compared loading parameters between groups (significance level = p<0.05). Analyses showed subtle differences in pressure distribution in unstable TKA patients versus healthy controls. Stance time during gait was indifferent. TKA patients tended to exhibit longer heel contact time (0.76 vs. 0.64 sec) and reduced weight acceptance (50.75% vs. 56.75%) on the operated versus non-operated limb. Side-to-side differences in toe-off forces were significantly more pronounced in TKA patients versus controls (9.25% vs. 3.75%; p=0.0088). Uneven loading was significantly greater – favouring the non-operated limb – in TKA patients during bilateral stance compared to controls (p<0.05). This feasibility work demonstrates subtle differences in limb loading and biomechanics during simple clinical tests in unstable TKA patients that might be undetectable to the naked eye. Pressure analyses may therefore be a useful diagnostic tool. These findings warrant further investigation


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 3 | Pages 436 - 444
1 Apr 2000
van Loon CJM de Waal Malefijt MC Buma P Stolk PWT Verdonschot N Tromp AM Huiskes R Barneveld A

The properties of impacted morsellised bone graft (MBG) in revision total knee arthroplasty (TKA) were studied in 12 horses. The left hind metatarsophalangeal joint was replaced by a human TKA. The horses were then randomly divided into graft and control groups. In the graft group, a unicondylar, lateral uncontained defect was created in the third metatarsal bone and reconstructed using autologous MBG before cementing the TKA. In the control group, a cemented TKA was implanted without the bone resection and grafting procedure. After four to eight months, the animals were killed and a biomechanical loading test was performed with a cyclic load equivalent to the horse’s body-weight to study mechanical stability. After removal of the prosthesis, the distal third metatarsal bone was studied radiologically, histologically and by quantitative and micro CT. Biomechanical testing showed that the differences in deformation between the graft and the control condyles were not significant for either elastic or time-dependent deformations. The differences in bone mineral density (BMD) between the graft and the control condyles were not significant. The BMD of the MBG was significantly lower than that in the other regions in the same limb. Micro CT showed a significant difference in the degree of anisotropy between the graft and host bone, even although the structure of the area of the MBG had trabecular orientation in the direction of the axial load. Histological analysis revealed that all the grafts were revascularised and completely incorporated into a new trabecular structure with few or no remnants of graft. Our study provides a basis for the clinical application of this technique with MBG in revision TKA