The triangular fibrocartilage complex (TFCC) is a known stabiliser of the distal radioulnar joint (DRUJ). An injury to these structures can result in significant disability including pain, weakness and joint stiffness. The contribution each of its components makes to the stability of the TFCC is not well understood. This study was undertaken to investigate the role of the individual ligaments of the TFCC and their contribution to joint stability. The study was undertaken in two parts. 30 cadaveric forearms were studied in each group. The ligaments of the TFCC were progressively sectioned and the resulting effect on the stability of the DRUJ was measured. A custom jig was created to apply a 20N force through the distal radius, with the ulna fixed. Experiment one measured the effect on DRUJ translation after TFCC sectioning. Experiment two added the measurement of
Introduction. IM (Intra Medullary) nail fixation is the standard treatment for diaphyseal femur fractures and also for certain types of proximal and distal femur fractures. Despite the advances in the tribology for the same, cases of failed IM nail fixation continue to be encountered routinely in clinical practice. Common causes are poor alignment or reduction, insufficient fixation and eventual implant fatigue and failure. This study was devised to study such patients presenting to our practice and develop a predictive model for eventual failure. Materials and Methods. 57 patients who presented with failure of IM nail fixation (± infection) between Jan 2011 – Jun 2020 were included in the study and hospital records and imaging reviewed. Those fixed with any other kinds of metalwork were excluded. Classification for failure of IM nails – Type 1: Failure with loss of contact of lag screw threads in the head due to backing out and then
Previous biomechanical studies of lateral collateral ligament (LCL) injuries and their surgical repair, reconstruction and rehabilitation have primarily relied on gravity effects with the arm in the varus position. The application of torsional moments to the forearm manually in the laboratory is not reproducible, hence studies to date likely do not represent forces encountered clinically. The aim of this investigation was to develop a new biomechanical testing model to quantify posterolateral stability of the elbow using an in vitro elbow motion simulator. Six cadaveric upper extremities were mounted in an elbow motion simulator in the varus position. A threaded screw was then inserted on the dorsal aspect of the proximal ulna and a weight hanger was used to suspend 400g, 600g, and 800g of weight from the screw head to allow torsional moments to be applied to the ulna. An LCL injured (LCLI) model was created by sectioning of the common extensor origin, and the LCL. Ulnohumeral rotation was recorded using an electromagnetic tracking system during simulated active and passive elbow flexion with the forearm pronated and supinated. A repeated measures analysis of variance was performed to compare elbow states (intact, LCLI, and LCLI with 400g, 600g, and 800g of weight). During active motion, there was a significant difference between different elbow states (P=.001 pronation, P=.0001 supination). Post hoc analysis showed that the addition of weights did not significantly increase the external rotation (ER) of the ulnohumeral articulation (10°±7°, P=.268 400g, 10.5°±7.1°, P=.156 600g, 11°±7.2°, P=.111 800g) compared to the LCLI state (8.4°±6.4°) with the forearm pronated. However, with the forearm supinated, the addition of 800g of weight significantly increased the ER (9.2°±5.9°, P=.038) compared to the LCLI state (5.9°±5.5°) and the addition of 400g and 600g of weights approached significance (8.2°±5.7°, P=.083 400g, 8.7°±5.9°, P=.054 600g). During passive motion, there was a significant difference between different elbow states (P=.0001 pronation, P=.0001 supination). Post hoc analysis showed that the addition of 600g and 800g but not 400g resulted in a significant increase in ER of the ulnohumeral articulation (9.3°±7.8°, P=.103 400g, 11.2°±6.2°, P=.004 600g, 12.7°±6.8°, P=.006 800g) compared to the LCLI state (3.7°±5.4°) with the forearm pronated. With the forearm supinated, the addition of 400g, 600g, and 800g significantly increased the ER (11.7°±6.7°, P=.031 400g, 13.5°±6.8°, P=.019 600g, 14.9°±6.9°, P=.024 800g) compared to the LCLI state (4.3°±6.6°). This investigation confirms a novel biomechanical testing model for studying PLRI. Moreover, it demonstrates that the application of even small amounts of torsional moment on the forearm with the arm in the varus position exacerbates the
INTRODUCION. Appropriate soft tissue balance is an important factor for postoperative function and long survival of total knee arthroplasty(TKA). Soft tissue balance is affected by ligament release, osteophyte removal, order of soft tissue release, cutting angle of tibial surface and rotational alignment of femoral components. The purpose of this study is to know the characteristics of soft tissue balance in ACL deficient osteoarthritis(OA) knee and warning points during procedures for TKA. METHODS. We evaluated 139 knees, underwent TKA (NexGen LPS-Flex, fixed surface, Zimmer) by one surgeon (S.A.) for OA. All procedures were performed through a medial parapatellar approach. There were 49 ACL deficient knees. A balanced gap technique was used in 26 ACL deficient knees, and anatomical measured technique based on pre-operative CT was used in 23 ACL deficient knees. To compare flexion-extension gaps and medial- lateral balance during operations between the two techniques, we measured each using an original two paddles tensor (figure 1) at 20lb, 30lb and 40lb, for each knee at a 0 degree extension and 90 degree flexion. We measured bone gaps after removal of all osteophytes and cutting of the tibial surface, then we measured component gaps after insertion of femoral components. Statistical analysis was performed by t-test with significant difference defined as P<0.05. RESULTS. (1) There were 90 ACL remaining knees and 49 deficient knees. Each group's preoperative FTA was 184±4.4 degrees, 187±6.3 degrees, postoperative FTA was 174±2.7 degrees, 173±3.1 degrees, preoperative knee extension was −12.8±7.5 degrees, −14.5.±3.1 degrees, flexion was 122.4±13.7 degrees, 110.7±20.2 degrees, post-operative β angle was, 88.1±2.5 degrees, 88.5±2.5 degrees. Comparing bone gap, medial gap and lateral-medial gap at a 30lb flexion were significantly different(P<0.05). (2) Comparing component gaps using modified gap techniques (group G) and anatomical techniques (group A) in ACL deficient knees, extension of medial and lateral gaps at 30lb and 40 lb in anatomical technique was bigger. The lateral-medial gap at 30lb was bigger in anatomical techniques. (P<0.05). DISCUSSION. The present results showed that ACL deficient OA knee were looser at medial side compared with ACL remaining OA knees. It indicates that we performed medial rerelease carefully in ACL deficient TKA. When we used gap techniques, medial loosening caused malposition of femoral components, and when we used anatomical techniques, extension gap was bigger than using gap techniques because generally smaller femoral components were chosen. It is reported that lateral gaps are bigger in severe varus deformity OA than slightly deformed OA knees and the soft tissue on the medial side is not shorter. It is also reported the correlation of lateral thrust with ACL deficiency and the progression OA, and when OA is developed, lateral side becomes loose. Our study indicated that ACL deficient OA knee progress
Introduction. Many factors can influence post-operative kinematics after total knee arthroplasty (TKA). These factors include intraoperative surgical conditions such as ligament release or quantity of bone resection as well as differences in implant design. Release of the medial collateral ligament (MCL) is commonly performed to allow correction of varus knee. Precise biomechanical knowledge of the individual components of the MCL is critical for proper MCL release during TKA. The purpose of this study was to define the influences of the deep medial collateral ligament (dMCL) and the posterior oblique ligament (POL) on valgus and rotatory stability in TKA. Materials and Methods. This study used six fresh-frozen cadaveric knees with intact cruciate ligaments. All TKA procedures were performed by the same surgeon using CR-TKA with a CT-free navigation system. Each knee was tested at 0°, 20°, 30°, 60°, and 90° of flexion. One sequential sectioning sequence was performed on each knee, beginning with an intact knee (S0), and thereafter femoral arthroplasty only (S1), tibial arthroplasty (S2), release of the dMCL (S3), and finally, release of the POL (S4). The same examiner applied all external load of 10 N-m valgus and a 5 N-m internal and external rotation torque at each flexion angle for the each cutting state. All data were analyzed statistically using one-way ANOVA and we investigated the correlation between the medial gap and the rotation angle. A significant difference was determined to be present for P < .05. Results. There were no correlation between the medial gap and the rotation angle in S0. A moderate correlation was found in S1 at 0° and 20°, and a considerable correlation was found in S2 at 90°. There was a correlation at all angles in S4, and especially strong at 20°, 60°, 90°. Conclusion. From this study, there were no correlation between medial knee instability and total rotation angles after performing TKA only by releasing dMCL, but by adding POL release, there were correlation in all angles. Therefore, medial knee instability caused by excessive release of the main medial knee structures may promote
Background. External fixation for a fracture-dislocation to a joint like the elbow, while maintaining joint mobility is currently done after identifying the center of rotation under X-ray guidance, when applying either a mono-lateral or a circular fixator. Current treatment. using the galaxy fixation system by Orthofix, the surgeon needs to correctly identify the center of rotation of the elbow under X-ray guidance on lateral views. If the center of rotation of the fixator is not aligned with that of the elbow joint, the assembly will not work, i.e. the elbow will be disrupted on trying to achieve flexion or extension movements. Figures (A, B, C and D) summarize the critical steps in identifying the centre of rotation (Courtesy of Orthofix Orthopedics International). New design. This new idea aims to propagate the principle of sliding external fixation applied on the extensor side of a joint, with the limbs of the fixator being able to slide in and out during joint extension and flexion respectively, without hindering the joint movement. Taking the ulno-humeral joint as an example, it is enough to apply the sliding external fixator in line with the subcutaneous border of the ulna, and the pins in the sagital plane, without the need to use x-ray guidance to identify the center of rotation, which simplifies the procedure, and makes it less technically demanding. The sliding external fixator over the elbow involves two bars which accommodate half pins fixation with headless grip screws to hold the pins, identical to the Rancho cubes technique by Smith & Nephew, these slide snugly into sleeves, those sleeves linked together through a hinge behind the elbow, and the bars are spring loaded to the hinge through the inside of the sleeves, which means they will slid into the sleeves in extension and out in flexion. Length of the sleeve should prevent the bars from dislodgement, and the cross section of both the bars and the sleeves have to correspond to each other for the sleeves to accommodate the bars within them and to prevent
Fractures of the anteromedial facet (AO/OTA 21-B1.1, O'Driscoll Type 2, subtype 3) are associated with varus posteromedial
Introduction. Backside wear of polyethylene (PE) inlays in fixed-bearing total knee replacement (TKR) generates high number of wear debris, but is poorly studied in modern plants with improved locking mechanisms. Aim of study. Retrieval analysis of PE inlays from contemporary fixed bearing TKRs - to evaluate the relationship between backside wear and liner locking mechanism and material type and roughness of the tibial tray. Methods. MATERIAL. We included five types of implants, revised after min. 12 months (14–71): three models with a peripheral locking rim and two models with a dove-tail locking mechanism. Altogether this study included 15 inlays were removed from TKRs with CoCr alloy tray with a roughened surface and a peripheral locking lip liner (Stryker Triathlon, Ra 5,61 µm), 9 from CoCr trays with peripheral locking lip and untreated surface (Aesculap Search, Ra 0,81 µm), 13 from Ti alloy trays with peripheral locking lip and untreated surface (DePuy PFC Sigma 0,61 µm), 11 from Ti alloy trays with untreated surface and dovetail locking mechanism (Zimmer NexGen, 0,34 µm), and 9 from iplants with a Ti alloy tibial tray with mirror polished surface and dovetail locking mechanism (Smitn&Nephew Genesis II, 0,11 µm). METHODS. Wear of bearing surface and back side of retrieved inlays was examined in 10 sectors under a light microscope. Seven modes of wear were analysed and quantified according to the Hood scale: surface deformation, pitting, embedded third bodies, pitting, scratching, burnishing (polishing), abrasion and delamination. Damage of inlays caused by backside wear was also evaluated using scanning electron microscopy (SEM). Roughness of tibial tray was evaluated using a contact profilometer. Results. We found no differences between wear scores on the articulating surface in all group, they did not correlate with backside wear scores in all groups as well. Compared to all other groups, backside wear scores were significantly higher in implants with untreated Ti alloy tibial tray (P<0,001 Wilcoxon test). Lowest wear rates were found in implants from both Ti and CoCr alloys and peripheral locking rim. Interestingly there was no difference between wear of implants with polished and untreated surface (Fig. 1). SEM analysis demonstrated different wear modes in implants with dovetail mechanism and peripheral rim. The first group demonstrated signs of gross
The aims of this study were (1) to assess whether rotational stability testing in Gartland III supracondylar fractures can be used intra-operatively in order to assess fracture stability following fixation with lateral-entry wires and (2) to quantify the incidence of
Patients with neuromuscular disease and imbalance present a particularly challenging clinical situation for the orthopaedic hip surgeon. The cause of the neuromuscular imbalance may be intrinsic or extrinsic. Intrinsic disorders include those in which the hip is in development, such as cerebral palsy, polio, CVA, and other spinal cord injuries and disease. This can result in subluxation and dislocation of the hip in growing children, and subsequent pain, and difficulty in sitting and perineal care. Extrinsic factors involve previously stable hips and play a secondary role in the development of osteoarthritis and contractures in later life. Examples of extrinsic factors are Parkinson's disease, dyskinesis, athetosis, and multiple sclerosis. Goals of treatment in adults with pain and dysfunction in the setting of neuromuscular imbalance are to treat contractures and to perform salvage procedures to improve function and eliminate pain. Treatment of patients with neuromuscular imbalance may include resection arthroplasty (Girdlestone), arthrodesis, or total hip arthroplasty. Resection arthroplasty is typically reserved for patients that are non-ambulatory, or hips that are felt to be so unstable that arthroplasty would definitely fail due to instability. In modern times arthrodesis has limited use as it negatively impacts function and self-care in patients with neuromuscular disorders. Total hip arthroplasty has the ability to treat pain, relieve contractures, and provide improved function. Due to the increased risk of instability, special considerations must be made during primary total hip arthroplasty in this patient cohort. Risk of instability may be addressed by surgical approach, head size, or use of alternative bearing constructs. Posterior approach may have increased risk of posterior dislocation in this patient group, particularly if a posterior capsular repair is not possible due to the flexion contractures and sitting position in many patients. Surgeons familiar with the approaches may utilise the anterolateral or direct anterior approach judicially. Release of the adductors may be performed in conjunction with primary total hip arthroplasty to help with post-operative range of motion and to decrease risk of instability. In a standard bearing, the selected head size should be the largest that can be utilised for the particular cup size. Rigorous testing of intra-operative impingement, component