Aim.
Aim. A significant number of patients undergoing shoulder arthroplasty surgery have C acnes contamination at the end of the primary surgery. The objective of this study is to determine whether patients with C acnes contamination at the end of their primary shoulder surgery have a worse prognosis than those who end up without C. acnes contamination. Method. Prospective study including all patients who underwent a reverse
Introduction. Modern prostheses of the 3rd and 4th generation facilitate a precise adjustment to various humeral anatomies. This provides major advantages regarding soft tissue balancing and the reconstruction of the rotational center. Thus, high expectations are linked to the use of modern shoulder prostheses compared to conventional designs. Methods. Out of a prospective multicenter study, 108 cases (72 females, 36 males) were reviewed. All patients were treated with the same type of double eccentric
Purpose. Reverse
Background. One of the main concern about reverse shoulder arthoplasty for the treatment of rotator cuff deficiency is scapular notching that is still an unsolved issue for this particular prosthesis. The purpose of this multicentric retrospective study is to compare two different concept of reverse prosthesis, one with a concentric glenoshere and the other one with a new eccentric glenoshere design that aim to minimize scapular notching. Methods. From 2004 to 2009 67 patients were treated with a SMR reverse
Loosening of the baseplate is one of the most common causes of failure in Reverse Shoulder Arthroplasty. To allow osteo-integration to occur and thus provide long-term stability, initial screws fixation plays a pivotal role. In particular, tightening torque and force of nonlocking screws are two parameters that are considered to have a clear impact on implant stability, yet the relation is not fully understood. For this reason, this study aims to define an experimental set-up, to measure force and torque in artificial bone samples of different quality, in order to estimate ranges of optimal surgical values and give guidelines to maximize screw fixation and therefore initial implant stability. A custom-made torque sensor (Figure 1a) was built and calibrated using a lever deadweight system. To measure the compression force generated by the screw head, three thin FlexiForce sensors (Tekscan, South Boston, US) were enclosed between two 3D printed plates with a central hole to allow screw insertion (Figure 1b). The tightening force, represented by the sum of the three sensors, was calibrated using a uniaxial testing machine (Zwick/Roell, Ulm, Germany). Multiple screw lengths (26mm, 32mm and 47mm) were selected in the protocol. Synthetic bone blocks (Sawbones; Malmö, Sweden) of 20 and 30 PCF were used to account for bone quality variation. To evaluate the effect of a cortical bone layer, for each density three blocks were considered with 0 mm (no layer), 1.5 mm and 3 mm of laminate foam of 50 PCF. The holes for the screws were pre-drilled in the same way as in the operation room. For each combination of screw dimensions and bone quality, ten measurements were performed by acquiring the signal of the insertion torque and tightening force until bone breaking.Introduction
Methods
Stemless prostheses are recognized to be an effective solution for anatomic total shoulder arthroplasty (TSA) while providing bone preservation and shortest operating time. Reverse shoulder arthroplasty (RSA) with stemless has not showed the same effectiveness, as clinical and biomechanical performances strongly depend on the design. The main concern is related to stability and bone response due to the changed biomechanical conditions; few studies have analyzed these effects in anatomic designs through Finite Element Analysis (FEA), however there is currently no study analyzing the reverse configuration. Additionally, most of the studies do not consider the effect of changing the neck-shaft angle (NSA) resection of the humerus nor the proper assignment of spatial bone properties to the bone models used in the simulations. The aim of this FEA study is to analyze bone response and primary stability of the SMR Stemless prosthesis in reverse with two different NSA cuts and two different reverse angled liners, in bone models with properties assigned using a quantitative computed tomography (QCT) methodology. Sixteen fresh-frozen cadaveric humeri were modelled using the QCT-based finite element methodology. The humeri were CT-scanned with a hydroxyapatite phantom to allow spatial bone properties assignment [Fig. 1]. Two implanted SMR stemless reverse configurations were considered for each humerus: a 150°-NSA cut with a 0° liner and a 135°-NSA cut with a 7° sloped liner [Fig. 2]. A 105° abduction loading condition was simulated on both the implanted reverse models and the intact (anatomic) humerus; load components were derived from previous dynamic biomechanical simulations on RSA implants for the implanted stemless models and from the OrthoLoad database for the intact humeri. The postoperative bone volume expected to resorb or remodel [Fig. 3a] in the implanted humeri were compared with their intact models in sixteen metaphyseal regions of interest (four 5-mm thick layers parallel to the resection and four anatomical quadrants) by means of a three-way repeated measures ANOVA followed by post hoc tests with Bonferroni correction. In order to evaluate primary stability, micromotions at the bone-Trabecular Titanium interface [Fig. 3b] were compared between the two configurations using a Wilcoxon matched-pairs signed-rank test. The significance level α was set to 0.05.Background
Methods
Locked anterior shoulders (LAS) with static instability and anterior glenoid bone loss are challenging in the elderly population. Reverse shoulder arthroplasty (RSA) has been employed in treating these patients. No study has compared RSA for LAS to classically indicated RSA. A case-control study of patients treated with RSA for LAS with glenoid bone loss and static instability was performed using matched controls treated with primary RSA for classic indications. Twenty-four cases and 48 controls were evaluated. Average follow-up was 25.5 months and median age was 76. Motion, outcome assessments, and postoperative radiographs were compared.Background
Methods
Reverse total shoulder arthroplasty continues to have a high complication rate, specifically with component instability and scapular notching. Therefore, the purpose of this study was to quantify the effects of humeral component neck angle and version on impingement free range of motion. A total of 13 cadaveric shoulders (4 males and 9 females, average age = 69 years, range 46 to 96 years) were randomly assigned to two studies. Study 1 investigated the effects of humeral component neck angle (n=6) and Study 2 investigated the effects of humeral component version (n=7). For all shoulders, Tornier Aequalis® Reversed Shoulder implants (Edina, MN) were used. For study 1, the implants were modified to 135, 145 and 155 degree humeral neck shaft angles and for Study 2 a custom implant that allowed control of humeral head version were used. For biomechanical testing, a custom shoulder testing system that permits independent loading of all shoulder muscles with six degree of freedom positioning was used. (Figure 1) Internal control experimental design was used where all conditions were tested on the same specimen.Introduction
Methods
When reversing the hard-soft articulation in inverse shoulder replacement, i.e. hard inlay and soft glenosphere (cf. Figure 1), the tribological behaviour of such a pairing has to be tested thoroughly. Therefore, two hard materials for the inlay, CoCr alloy and alumina toughened zirconia ceramic (ceramys®) articulating on two soft materials, conventional UHMWPE and vitamin E stabilised, highly cross-linked PE (vitamys®) were tested in a joint simulator. The simulator tests were performed at Endolab GmbH, Rosenheim, Germany, analogue to standardised gravimetric wear tests for hip prosthesis (ISO 14242-1) with load and motion curves adapted to the shoulder. The test parameters differing from the standard were the maximum force (1.0 kN) and the range of motion. A servo-hydraulic six station joint simulator (EndoLab) was used to run the tests up to 5*106 cycles with diluted calf serum at 37° C as lubricant. Visual inspection and mass measurements were done at 0.1, 0.5, 1, 2, 3, 4 and 5 million cycles using a high precision scale and a stereo microscope, respectivly.Background
Methods
90 cases of reversed prosthesis have been evaluated and the aim of the retrospective multicenter study was to correlate the functional and radiological results depending on the type of implant. 90 patients have been operated (67 eccentric omarthrosis, 5 centered omarthrosis, 7 massive rotator cuff tear, 11 others), by 8 surgeons in 3 centers by a delto-pectoral approach (71%), and evaluated retrospectively by an independant surgeon. 3 types of prosthesis have been implanted: 1st generation of reversed prosthesis (Aequalis-Reversed, Tornier®: humeral neck angle of 155°), BioRSA (humeral neck angle of 155° but with lateralization of center of rotation, Tornier®), and a prosthesis with a more vertical angle of 145° (Humelock-Reversed, FX-Solutions®. A prospective study of the QuickDash score, Constant score and analysis of clinical and radiological complications by the surgeon and an independant surgeon at the time of longest follow up is reported.Introduction:
Material & Methods:
Introduction. Shoulder arthoplasty has increased in the last years and its main goal is to relieve pain and restore function.
Introduction. Machine learning is a relatively novel method to orthopaedics which can be used to evaluate complex associations and patterns in outcomes and healthcare data. The purpose of this study is to utilize 3 different supervised machine learning algorithms to evaluate outcomes from a multi-center international database of a single
Purpose. Total shoulder arthroplasty (TSA) has become a successful treatment option for degenerative shoulder disease. With the increasing incidence in primary TSA procedures during the last decades, strategies to improve implant longevity become more relevant. Implant failure is mainly associated with mechanical or biological causes. Chronic inflammation as a response to wear particle exposure is regarded as a main biological mechanism leading to implant failure. Metal ions released by fretting and corrosion at modular taper connections of orthopedic implants can cause cell-mediated hypersensitivity reactions and might lead to aseptic loosening. Modularity is also commonly used in total shoulder replacement. However, little is known about metal ion exposure in patients following TSA. The objective of this study was to determine in-vivo blood metal ion levels in patients after TSA and to compare blood metal ion levels to control subjects without metal implants. Methods. A total of 19 patients with anatomical total
Aim. Cutibacterium acnes (CA) is one of the crucial actors in spine instrumentation or
Introduction. the aim of the study is to evaluate the clinical results of the
Introduction. The following study start from an idea of the evaluation of the osteointegration in the bone cage of the Equinoxe Reverse
INTRODUCTION. Shoulder joint prostheses have become the most commonly replaced after knee and hip artificial implants. Reverse shoulder arthroplasty (RSA) is the treatment option for patients with severe osteoarthritis, rotator cuff arthropathy or a massive rotator cuff tear with pseudoparalysis. Though successful, the long-term survival of such implants are limited by wear of the materials in contact [1, 2]. The aim of this study was to investigate RSA wear in vitro using a clinically relevant activities of daily living (ADLs). MATERIALS AND METHODS. Four new JRI Orthopaedics Reverse Shoulder 42 mm diameter VAIOS with cobalt-chromium (CoCr) glenospheres and ultra-high molecular weight polyethylene (UHMWPE) humeral components were tested. A five million cycles wear test was undertaken using the unique Newcastle Shoulder Wear Simulator with dilute bovine serum as a lubricant. “Mug to mouth” was performed as the ADL to the test prostheses in intervals of 100 cycles, following by 5 seconds of high load (450N) with no motion simulating an ADL such as “lifting an object”. This combined load cycle was then repeated. A fifth reverse
Background. Scapular notching is a complication after reverse shoulder arthroplasty with a high incidence up to 100%. Its clinical relevance remains uncertain; however, some studies have reported that scapular notching is associated with an inferior clinical outcome. There have been no published articles that studied positional relationship between the scapular neck and polyethylene insert in vivo. The purpose of this study was to measure the distance between the scapular neck and polyethylene insert in shoulders with Grammont type reverse shoulder arthroplasty during active external rotation at the side. Methods. Eighteen shoulders with Grammont type prosthesis (Aequalis Reverse, Tornier) were enrolled in this study. There were 13 males and 5 female, and the mean age at surgery was 74 years (range, 63–91). All shoulders used a glenosphere with 36mm diameter, and retroversion of the humeral implant was 10°in 4 shoulders, 15°in 3 shoulders, and 20°in 11 shoulders. Fluoroscopic images were recorded during active external rotation at the side from maximum internal to external rotation at the mean of 14 months (range, 7–24) after surgery. The patients also underwent CT scans, and three-dimensional glenosphere models with screws and scapula neck models were created from CT images. CT-derived models of the glenosphere and computer-aided design humeral implant models were matched with the silhouette of the implants in the fluoroscopic images using model-image registration techniques (Figure 1). Based on the calculated kinematics of the implants, the closest distance between the scapular neck and polyethylene insert was computed using the scapular model and computer-aided design insert models (Figure 2). The distance was computed at each 5° increment of glenohumeral internal/external rotation, and the data from 20°internal rotation to 40°external rotation were used for analyses. One-way repeated-measures analysis of variance was used to examine the change of the distance during the activity, and the level of significance was set at P < 0.05. Results. The mean glenohumeral abduction during the activity was 17°-22°. The mean distance between the neck and insert was approximately 1mm throughout the activity (Figure 3). The distance tended to become smaller with the arm externally rotated, but the change was not significant. Discussion. The reported incidence of scapular notching after Grammont type reverse shoulder arthroplasty is generally higher than the newer design prosthesis with the lateralized center of rotation. This may be associated with the design of the prosthesis, and the results of this study that the distance between the neck and insert was approximately 1mm throughout active external rotation at the side will support the high incidence of notching. We may need to analyze the distance with the newer design reverse
Introduction:. Given that factors like center of rotation (COR), neck shaft angle, glenosphere diameter and component tilt alter the biomechanics of reverse total shoulder arthroplasty (rTSA), the performance of the total rTSA system is of interest. This study compared the composite performance of two rTSA systems that were designed around a medialized or lateralized glenohumeral COR. The objective was to quantify the following outcome measures: 1) COR & humeral position; 2) range of glenohumeral abduction; 3) force to abduct; and 4) range of internal (IR)/external (ER) rotation. Methods:. Seven pairs of shoulders were tested with a biomechanical shoulder simulator. Beads were implanted in the scapula and humerus to quantify bone positions with a fluoroscope. Spectra lines simulated the deltoid and the rotator cuff. Linear actuators simulated muscle excursion while load cells recorded applied force. Diode arrays were used to quantify arm position and calculate the humeral center of rotation. Native specimens were tested where a motion path was recorded from resting to peak glenohumeral abduction in the scapular plane. The trajectory was replayed and deltoid force vs. arm position was recorded. With the elbow flexed, the arm was articulated to maximal internal and external rotation to determine ROM limits due to impingement or soft tissue constraint. Specimens were implanted with a Tornier Aequalis Reversed