Advertisement for orthosearch.org.uk
Results 1 - 20 of 24
Results per page:
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 122 - 122
1 May 2016
Patel R Zumbrunn T Varadarajan K Freiberg A Rubash H Muratoglu O Malchau H
Full Access

Introduction

Dual-mobility (DM) liners have increased popularity due to the range of motion and stability provided by these implants. However, larger head diameters have been associated with anterior hip pain, due to surrounding soft-tissue impingement, particularly the iliopsoas. To address this, an anatomically contoured dual mobility (ACDM) liner was designed by reducing the volume of the liner below the equator (Fig1). Previous cadaver studies have shown that the ACDM significantly reduces iliopsoas tenting and trapping of the liner compared to conventional designs. We created a finite element study based on previous cadaver testing to further analyze the effectiveness of the ACDM design in reducing soft-tissue impingement, specifically the tendon-liner contact pressure and the tendon stress.

Methods

The finite element model was developed within COMSOL 4.3b. The psoas tendon was modelled as a Yeoh hyper-elastic Material, which uses 3 constants (c1-c3), density (1.73g/cm3) and a bulk modulus (26GPa)[Hirokawa,2000]. In a previous, separate study, the average stiffness of 10 psoas tendon samples (5 cadavers), were measured to be 339[N/mm] in the linear region with average width and thickness of 14mmX4mm. The 3 constants were tuned to match experimental uniaxial test data, and were 5[GPa], 0[Gpa], and 46[GPa] for c1, c2, and c3 respectively.

The implant components were rigidly modeled relative to the psoas. Cadaver specific CT models were used to create the FEA geometry. The insertion points for the Psoas were digitally determined on the proximal end of the lesser trochanter, and the psoas notch on the pelvis for hip flexion angles of −15°, 0°, 15° and 30°. These insertion points determined the length of the psoas and its relative position to the femoral head in 3D. The specific liner size and position for each cadaver was determined by implant planning with the CT models. In this abstract, we only present data for 2 specimens (left/right hips) with 44mm conventional DM, and 44mm ACDM, matching specimen anatomy. A 500N tensile load was applied to the psoas tendon proximally to simulate moderate physiological loading, the average/max stresses and contact pressures between the psoas and the two liner designs were determined.


Bone & Joint Open
Vol. 4, Issue 7 | Pages 539 - 550
21 Jul 2023
Banducci E Al Muderis M Lu W Bested SR

Aims

Safety concerns surrounding osseointegration are a significant barrier to replacing socket prosthesis as the standard of care following limb amputation. While implanted osseointegrated prostheses traditionally occur in two stages, a one-stage approach has emerged. Currently, there is no existing comparison of the outcomes of these different approaches. To address safety concerns, this study sought to determine whether a one-stage osseointegration procedure is associated with fewer adverse events than the two-staged approach.

Methods

A comprehensive electronic search and quantitative data analysis from eligible studies were performed. Inclusion criteria were adults with a limb amputation managed with a one- or two-stage osseointegration procedure with follow-up reporting of complications.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 19 - 19
24 Nov 2023
McNally M Alt V Wouthuyzen M Marais L Metsemakers W Zalavras C Morgenstern M
Full Access

Aim. To classify Fracture-related Infection (FRI) allowing comparison of clinical studies and to guide decision-making around the main surgical treatment concepts. Method. An international group of FRI experts met in Lisbon, June 2022 and proposed a new FRI classification. A core group met during the EBJIS Meeting in Graz, 2022 and on-line, to determine the preconditions, purpose, primary factors for inclusion, format and the detailed description of the elements of an FRI Classification. Results. Historically, FRI was classified by time from injury alone (early, delayed or late). Time produces pathophysiological changes which affect the bone, the soft-tissues and the patient general health, over a continuum. No definitive cut-off is therefore possible. Also, in several studies, time was not identified as an independent predictor of outcome. The most important primary factors were characteristics of the fracture (F), relevant systemic co-morbidities of the patient (R) and impairment of the soft-tissue envelope (I). These factors determine FRI severity, choice of treatment method and are predictors of outcome. For the fracture (F), the state of healing, the potential for bone healing and the presence or absence of a bone defect are critical factors. Co-morbidities are listed and the degree of end-organ damage is important (R). The ability to close the wound directly or the need for soft tissue reconstruction determines the impairment of the soft tissue component (I). Hence the FRI Classification was designed. The final proposal of the FRI Classification is presented here. The new classification has five stages; from simple cases of infected healed fractures, in healthy individuals with good soft tissues (Stage 1), through unhealed fractures with variable potential for bone healing (Stages 2, 3 or 4) to Stage 5, with no limb-sparing or reconstructive options. For instance, the need for a free flap (I4), over a well-healed fracture (F1), in a patient with 2 co-morbidities (R2) gives a classification of F1R2I4 for that patient. Conclusions. This novel approach to FRI classification builds on previous work in osteomyelitis, PJI and chronic medical conditions. It focusses attention on the elements of the disease which need treatment. It now requires validation in large patient cohorts. On behalf of the FRI Classification Consensus Group


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_5 | Pages 27 - 27
1 Apr 2022
Harrison WD Fortuin F Joubert E Durand-Hill M Ferreira N
Full Access

Introduction. Temporary spanning fixation aims to provide bony stability whilst allowing access and resuscitation of traumatised soft-tissues. Conventional monolateral fixators are prone to half-pin morbidity in feet, variation in construct stability and limited weight-bearing potential. This study compares traditional delta-frame fixators to a circular trauma frame; a virtual tibial ring block spanned onto a fine-wire foot ring fixation. Materials and Methods. The two cohorts were compared for demographics and fracture patterns. The quality of initial reduction and the maintenance of reduction until definitive surgery was assessed by two authors and categorised into four domains. Secondary measures included fixator costs, time to definitive surgery and complications. Results. Fifty-six delta-frames and 48 circular fixators were statistically matched for demographics and fracture pattern. Good or excellent initial reduction was achieved in 51 (91%) delta-frames and 48 (100%) circular fixators (p=0.022). Loss of reduction was observed in 15 (27%) delta-frames and 3 (6%) circular fixators (p<0.001). Post-fixator dislocation occurred in five (9%) delta-frames and one (2%) circular fixator (p=0.147). Duration in spanned fixation was equivalent (11.5 and 11.6 days respectively, p=0.211). Three (5%) delta-frames and 12 (25%) circular fixators were used as definitive fixation. The mean hardware cost was £3,116 for delta-frames and £2,712 for circular fixators. Conclusions. Temporary circular fixation offers statistically superior intra-operative reduction and maintenance of reduction, facilitates weight-bearing and provides more opportunity as the definitive fixation. Circular fixation hardware proved to be less expensive and protected against further scheduled and unscheduled operations


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 279 - 279
1 Dec 2013
Komistek R Mahfouz M Wasielewski R De Bock T Sharma A
Full Access

INTRODUCTION:. Previous modalities such as static x-rays, MRI scans, CT scans and fluoroscopy have been used to diagnosis both soft-tissue clinical conditions and bone abnormalities. Each of these diagnostic tools has definite strengths, but each has significant weaknesses. The objective of this study is to introduce two new diagnostic, ultrasound and sound/vibration sensing, techniques that could be utilized by orthopaedic surgeons to diagnose injuries, defects and other clinical conditions that may not be detected using the previous mentioned modalities. METHODS:. A new technique has been developed using ultrasound to create three-dimensional (3D) bones and soft-tissues at the articulating surfaces and ligaments and muscles across the articulating joints (Figure 1). Using an ultrasound scan, radio frequency (RF) data is captured and prepared for processing. A statistical signal model is then used for bone detection and bone echo selection. Noise is then removed from the signal to derive the true signal required for further analysis. This process allows for a contour to be derived for the rigid body of questions, leading to a 3D recovery of the bone. Further signal processing is conducted to recover the cartilage and other soft-tissues surrounding the region of interest. A sound sensor has also been developed that allows for the capture of raw signals separated into vibration and sound (Figure 2). A filtering process is utilized to remove the noise and then further analysis allows for the true signal to be analyzed, correlating vibrational signals and sound to specific clinical conditions. RESULTS:. Numerous tests have been conducted using this ultrasound technique to create 3D bones compared more traditional techniques, MRI and CT Scans. These tests have shown repeatedly that 3D bones can be created with an error less than 1.0 mm. Soft-tissues at the joint of question are also created with a high accuracy. Sound signals have been analyzed and correlated to specific knee and hip clinical pathology as well as complications after Total Joint Arthroplasty. Sounds such as squeaking, knocking, grinding, clicking and even a rusty door hinge have been recovered during weight-bearing activities. DISCUSSION:. Both CT scans and x-rays emit radiation, and static CT scans and MRI scans are conducted under non weight-bearing conditions. These two new orthopaedic diagnostic techniques, ultrasound and sound, allow a surgeon to make clinical diagnoses while the patient is performing weight-bearing, dynamic activities, while not being subjected to harmful radiation. Sound analyses allow for support of the ultrasound and physical exam that can lead to enhanced diagnostics that are not possible using only a visual based analysis. Early results are promising for both of these new diagnostic techniques. This study revealed that weight-bearing, dynamic diagnoses can be made by an orthopaedic surgeon and could have distinct advantages compared to traditional techniques


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 135 - 135
1 Feb 2017
Varadarajan KM Patel R Zumbrunn T Rubash H Malchau H Freiberg A Muratoglu O
Full Access

Introduction. Dual-mobility (DM) liners provide increased range of motion and stability. However, large head diameters have been associated with anterior hip pain due to impingement with surrounding soft-tissues, particularly the iliopsoas. Further, during hip extension the liner can get trapped due to anterior soft-tissue impingement that resists rotation being imparted to the liner from posterior stem-liner contact. Over time this can cause liner rim damage, leading to intra-prosthetic dislocation of the small diameter inner head. To address this, an anatomically contoured dual mobility (ACDM) liner was designed to reduce the volume of the liner below the equator that can interact with soft-tissues (Fig. 1). In this study, we utilized finite element analysis to evaluate tendon-liner contact pressure and tendon stresses with ACDM and conventional designs during hip extension, wherein the posterior edge of liner is in contact with the stem while the anterior edge is exposed to the soft-tissue. Methods. The average uniaxial stiffness (350 N/mm), and average dimensions (width × thickness = 14mm × 4mm) of 10 cadaver psoas tendon samples were determined in a separate study. The iliopsoas tendon was modelled as a Yeoh hyper-elastic material, and the material constants were tuned to match the experimental uniaxial test data. Cadaver specific FEA models were created for 5 specimens (10 hips) using computed tomography (CT) scans. The implant components were modeled as being rigid relative to the iliopsoas tendon. The iliopsoas tendon was modelled as extending from its insertion point on the lesser trochanter to the psoas notch on the pelvis for hip flexion angles of −15°, 0°, 15° and 30°. Appropriately sized DM components were implanted virtually for each specimen. Once placed in its proper position, the liner was rotated about the flexion axis until it contacted the stem posteriorly to represent its orientation during hip extension (Fig. 2). A 500N tensile load was applied to the iliopsoas tendon and the average/max stresses within the tendon, and average/max contact pressures between the tendon and liner were measured. Results. At all hip flexion angles from −15° to 30°, the tendon-liner contact pressure and tendon stresses were lower with the ACDM liners compared to the conventional liner. Contact pressure and tendon stress decreased for both liner designs with increasing hip flexion angle. At −15° flexion angle, the average contact pressure was 42.3% lower (0.36Mpa), and the maximum contact pressure was 45.1% (8.5Mpa lower), with the ACDM compared to conventional liner design. Similarly, at −15° flexion angle the average vonMises pressure in the tendon was 32.5% lower (14.8Mpa), and the maximum vonMises stress in the tendon was 55.7% (159Mpa lower) with the ACDM design. (Fig 3). Discussion. This study utilized cadaver specific FEA models to evaluate interaction between the iliopsoas tendon and conventional and ACDM liners during hip extension. The results showed a notable reduction in contact pressure and tendon stress resulting from reduced volume and more soft-tissue friendly profile of the ACDM design. Thus, the ACDM design may be able to reduce undesirable soft-tissue interaction with dual mobility liners


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 15 - 15
1 May 2016
Varadarajan K Zumbrunn T Duffy M Patel R Freiberg A Malchau H Rubash H Muratoglu O
Full Access

Introduction. Dual Mobility (DM) implants have gained popularity for the treatment and prevention of hip dislocation, with increased stability provided by a large diameter mobile liner. However, distal regions of the liner can impinge on soft-tissues like hip capsule and iliopsoas, leading to anterior hip pain. Additionally, soft-tissue impingement may trap the mobile liner, leading to excessive loading of the liner rim, from engagement with the femoral stem, and subsequent intra-prosthetic dislocation. The hypothesis of this study was that reducing the liner profile below the equator (contoured design) can mitigate soft-tissue impingement without compromising inner-head pull-out resistance and overall hip joint stability (Fig. 1). Methods. The interaction of conventional and contoured liners with anterior soft-tissues was evaluated in 10 cadaveric hips (5 specimens; 2 male, 3 female; age 65 ± 10 yrs; liner diameter 42–48mm) via visual observation and fluoroscopic imaging. A metal wire was sutured to the deep fibers of the iliopsoas tendon/muscle, and metal wires were embedded in the mobile liners for fluoroscopic visualization (Fig. 2). All soft-tissue except the anterior hip capsule and iliopsoas was removed, and a rope was attached to the iliopsoas to apply tension along its natural orientation. Resistance to inner-head pull-out was evaluated via Finite Element Analysis (FEA) by simulating a full cycle of insertion of the inner head into the mobile liner and subsequent pullout. The femoral head, acetabular shell, and stem were modeled as rigid, while the mobile liner was modeled as plastically deformable. Hip joint stability was evaluated by dynamic simulations in for two dislocation modes: (A) Posterior dislocation (at 90° hip flexion) with internal hip rotation; (B) Posterior dislocation (starting at 90° flexion) with combined hip flexion and adduction. A 44 mm diameter conventional and a 44 mm contoured liner were evaluated during these tests. Results. The cadaver experiments showed that distal portion of conventional liners impinge on anterior hip capsule and iliopsoas at low flexion angles (<30°). Additionally, when the hip moved from flexion into extension, the liner motion was blocked between posterior neck engagement, and anterior soft-tissue impingement. In all hips, the soft-tissue impingement / tenting was significantly reduced with contoured liners (Fig. 7). The change in tenting could be visualized as change in distance between the iliopsoas wire, and the contoured/conventional liners on sequential fluoroscopic images. The maximum reduction in iliopsoas tenting for a given specimen ranged from 1.8 mm to 5.5 mm. Additionally, the contoured and conventional liners had identical inner-head pull-out resistance (901N vs. 909N), jump distance (9.4 mm mode-A, 11.7 mm mode-B) and impingement-free range of motion (47° mode-A, 29° mode-B). Conclusion. This study showed that distal portions of conventional DM liners can impinge against iliopsoas and hip capsule in low flexion leading to functional impediment of liner motion. Additionally, reducing the liner profile below the equator led to significant reduction in soft-tissue impingement/tenting without affecting mechanical performance. Thus, a contoured dual mobility liner design may reduce the risk of anterior hip pain and intra-prosthetic dislocation resulting from soft-tissue impingement and liner entrapment. To view tables/figures, please contact authors directly


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 408 - 408
1 Dec 2013
Varadarajan KM Duffy M Zumbrunn T Rubash HE Malchau H Freiberg A Muratoglu O
Full Access

Introduction:. Large diameter femoral heads have been used successfully to prevent dislocation after Total Hip Arthroplasty (THA). However, recent studies show that the peripheral region of contemporary femoral heads can directly impinge against the native soft-tissues, particularly the iliopsoas, leading to activity limiting anterior hip pain. This is because the spherical articular surface of contemporary prosthesis overhangs beyond that of the native anatomy (Fig. 1). The goal of this research was to develop an anatomically shaped, soft-tissue friendly large diameter femoral head that retains the benefits of contemporary implants. Methods:. Various Anatomically Contoured femoral Head (ACH) designs were constructed, wherein the articular surface extending from the pole to a theta (θ) angle, matched that of contemporary implants (Fig. 2). However, the articular surface in the peripheral region was moved inward towards the femoral head center, thereby reducing material that could impinge on the soft-tissues (Fig. 1 and Fig. 2). Finite element analysis was used to determine the femoroacetabular contact area under peak in vivo loads during different activities. Dynamic simulations were used to determine jump distance prior to posterior dislocation under different dislocation modes. Published data was used to compare the implant articular geometry to native anatomy (Fig. 3). These analyses were used to optimize the soft-tissue relief, while retaining the load bearing contact area, and the dislocation resistance of conventional implants. Results:. The resulting ACH prosthesis retained the large diameter profile of contemporary implants over an approximately hemispherical portion (Fig. 2). Beyond this, the peripheral articular surface was composed of smaller convex radii. With this design, the jump distance under posterior and anterior dislocation modes, and the femoroacetabular contact area under loads corresponding to walking, deep knee bend and chair sit, remained identical to that of contemporary implants. Additionally, while contemporary prosthesis extended beyond the native articular surface in the distal-medial and proximal-lateral regions (shaded grey), the ACH implant remained within the margins of the native anatomy (Fig. 3). Conclusion:. A novel large diameter anatomically contoured femoral head prosthesis was developed, to mitigate the soft-tissue impingement with contemporary prosthesis. The ACH retained the large diameter profile of contemporary implants over a hemispherical portion. However, in the peripheral region, the ACH had a smaller profile to reduce soft-tissue impingement


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 73 - 73
1 Feb 2020
Catani F Ensini A Zambianchi F Illuminati A Matveitchouk N
Full Access

Introduction. Robotics have been applied to total knee arthroplasty (TKA) to improve surgical precision in components’ placement, providing a physiologic ligament tensioning throughout knee range of motion. The purpose of the present study is to evaluate femoral and tibial components’ positioning in robotic-assisted TKA after fine-tuning according to soft tissue tensioning, aiming symmetric and balanced medial and lateral gaps in flexion/extension. Materials and Methods. Forty-three consecutive patients undergoing robotic-assisted TKA between November 2017 and November 2018 were included. Pre-operative radiographs were performed and measured according to Paley's. The tibial and femoral cuts were performed based on the individual intra-operative fine-tuning, checking for components’ size and placement, aiming symmetric medial and lateral gaps in flexion/extension. Cuts were adapted to radiographic epiphyseal anatomy and respecting ±2° boundaries from neutral coronal alignment. Robotic data were recorded, collecting information relative to medial and lateral gaps in flexion and extension. Results. Patients were divided based on the pre-operative coronal mechanical femoro-tibial angle (mFTA). Only knees with varus deformity (mFTA<178°), 29 cases, were taken into account. On average, the tibial component was placed at 1.2°±0.5 varus. Femoral component fine-tuning based on soft-tissues tensioning in extension and flexion determined the following alignments: 0.2°±1.2 varus on the coronal plane and 1.2°±2.2° external rotation with respect to the trans-epicondylar axis (TEA) as measured on the CT scan in the horizontal plane. The average gaps after femoral and tibial resections, resulted as follows: 19.5±0.8 mm on the medial side in extension, 20.0±0.9 mm on the lateral side in extension, 19.1±0.7 mm on the medial side in flexion and 19.5±0.7 mm on the lateral side in flexion. On average, the post-implant coronal alignment as reported by the robotic system resulted 2.0°±1.5 varus. Discussion. The proposed robotic-arm assisted TKA technique, aiming to preserve the integrity of the ligaments, provides balanced and symmetric gaps in flexion and extension and an anatomic femoral and tibial component's placement with post-implant coronal alignment within ±2° from neutral alignment


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_8 | Pages 38 - 38
1 Aug 2020
Mattei J Alshaygy I Basile G Griffin A Wunder JS Ferguson P
Full Access

Sarcomas generally metastasize to the lung, while extra-pulmonary metastases are rare. However, they may occur more frequently in certain histological sub-types. Bone metastases from bone and soft tissue sarcomas account for a significant number of extra-pulmonary disease. Resection of lung metastases is widely accepted as therapeutic option to improve the survival of oligometastatic patients but there is currently no literature supporting curative surgical management of sarcoma bone metastases. Most are treated on a case-by-case basis, following multidisciplinary tumour boards recommendations. One study reported some success in controlling bone metastases using radiofrequency ablation. Our goal was to assess the impact of curative resection of bone metastases from soft tissue and bone sarcomas on oncologic outcomes. Extensive review of literature was done to evaluate epidemiological and outcomes of bone metastases in sarcoma. We examined our prospective database for all cases of bone metastases from sarcoma treated with surgical resection between 1990 and 2016. Epidemiology, pathology, metastatic status upon diagnosis, type of secondary relapses and their treatments were recorded. Overall survival and disease-free survival were calculated and compared to literature. Thirty-five patients were included (18 men, 17 women) with a mean age of 46 years. Fifteen were soft tissue (STS) and 20 were bone (BS) sarcomas. Most STS were fibrosarcomas, leiomyosarcomas or UPS while chondrosarcomas and osteosarcomas were the most frequent BS. Nine (60%) STS were grade 3, 4 (27%) grade 2 and one grade 1 (3%). Eight (23%) were metastatic upon diagnosis (6 lungs, 3 bone). Treatment of the primary tumour included wide excision with reconstruction and (neo)-adjuvant therapies as required. Margins were negative in 32 cases and micro-positive in 3 cases. Amputation occurred in 6 (17%) cases. Primary lung metastases were treated by thoracotomy and primary bone metastases by wide excision. First relapse occurred in bone in 19 cases (54%), lungs and bone in 7 cases, 5 in lungs and 4 in soft-tissues. Lung metastases were treated by thoracotomy and chemotherapy in 3 cases, chemotherapy alone in the remaining cases. Bone metastases were treated by wide resection-reconstruction in 24 cases, extensive curettage in 4. Soft tissue relapses were re-excised in 4 patients. Two amputations were required. All margins were negative except for the 4 treated by curettage. Fourteen second relapses occurred in bone, 7 were radically-excised and 2 curetted. At last follow-up, 6 patients were alive (overall survival of 17%), with a mean survival of 57 months, a median overall survival of 42.5 months and a median disease-free survival (DFS) of 17 months. Overall survival was 17%, compared to an 11% 10-year survival previously reported in metastatic sarcomas. Median disease-free survival was better in this study, compared to 10 months in literature, so as median OS (42.5 months vs 15). Three patients were alive with no evidence of disease. DFS, OS and median survival seemed to be improved by bone metastases wide excision and even if several recurrences occur, curative surgery with adjuvant therapies should be considered


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 86 - 86
1 Jun 2018
Mullaji A
Full Access

The extent of soft-tissue release and the exact structures that need to be released to correct deformity and balance the knee has been a controversial subject in primary total knee arthroplasty. Asian patients often present late and consequently may have profound deformities due to significant bone loss and contractures on the concave side, and stretching of the collateral ligament on the convex side. Extra-articular deformities may aggravate the situation further and make correction of these deformities and restoration of ‘balance’ more arduous. These considerations do not apply if a hinged prosthesis is used, as may be warranted in an elderly, low-demand patient. However, in active, younger patients, it may be best to avoid use of excess constraint by balancing the soft-tissues and using the least constrained implant. Releasing collateral ligaments during TKA has unintended consequences such as the creation of significant mediolateral instability and a flexion gap which exceeds the extension gap; both of these may require a constrained prosthesis to achieve stability. We will show that soft-tissue balance can be achieved even in cases of severe varus, valgus, flexion and hyperextension deformities without collateral ligament release. The steps are: 1) Determining pre-operatively whether deformity is predominantly intra-articular or extra-articular, 2) Individualizing the valgus resection angle and bony resection depth, 3) Meticulous removal of osteophytes, 4) Reduction osteotomy, posteromedial capsule resection, sliding medial or lateral condylar osteotomy, extra-articular corrective osteotomy, 5) Compensating for bone loss, 6)Only rarely deploying a more constrained device. Case examples will be presented to illustrate the entire spectrum of varus deformities


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 78 - 78
1 Apr 2019
Dessinger G Mahfouz M Fatah EEA Johnson J Komistek R
Full Access

Introduction. At present, orthopaedic surgeons utilize either CT, MRI or X-ray for imaging a joint. Unfortunately, CT and MRI are quite expensive, non weight-bearing and the orthopaedic surgeon does not receive revenue for these procedures. Although x-rays are cheaper, similar to CT scans, patients incur radiation. Also, all three of these imaging modalities are static. More recently, a new ultrasound technology has been developed that will allow a surgeon to image their patients in 3D. The objective of this study is to highlight the new opportunity for orthopaedic surgeons to use 3D ultrasound as alternative to CT, MRI and X-rays. Methods. The 3D reconstruction process utilizes statistical shape atlases in conjunction with the ultrasound RF data to build the patient anatomy in real-time. The ultrasound RF signals are acquired using a linear transducer. Raw RF data is then extracted across each scan line. The transducer is tracked using a 3D tracking system. The location and orientation for each scan line is calculated using the tracking data and known position of the tracker relative to the signal. For each scan line, a detection algorithm extracts the location on the signal of the bone boundary, if any exists. Throughout the scan process, a 3D point cloud is created for each detected bone signal. Using a statistical bone atlas for each anatomy, the patient specific surface is reconstruction by optimizing the geometry to match the point cloud. Missing regions are interpolated from the bone atlas. To validate reconstructed models output models are then compared to models generated from 3D imaging, including CT and MRI. Results. 3D ultrasound, which now has FDA approval in the United States, is presently available for an orthopaedic surgeon to use. Error analyses have been conducted in comparison to MRI and CT scans and revealed that 3D ultrasound has a similar accuracy of less than 1.0 mm in the creation of a 3D bone and soft-tissues. Unlike CT and MRI scans that take in excess of 2–3 weeks to create human bones, 3D ultrasound creates bones in 4–6 minutes. Once the bones are created, the surgeon can assess bone quality, ligament and cartilage conditions, assess osteophytes, fractures and guide needles into the 3D joint space. The creation of 3D bones has been accurately assessed for the spine, shoulder, knee, hip and ankle joints. A 3D joint pre-operative planning module has also been developed for a surgeon to size and position components before surgery. Discussion. 3D ultrasound is an exciting new imaging technology available for orthopaedic surgeons to use in their practice. Existing CPT codes are readily available for 3D ultrasound procedures. A surgeon can now evaluate and diagnose bone and soft- tissue conditions, in 3D, using ultrasound, which is safer and is an easier procedure compared to CT, MRI and X-rays. This new ultrasound technology is a highly accurate imaging technique that will allow a surgeon to diagnose bone and soft-tissue concerns in 3D, under weight-bearing, dynamic conditions and guide needle injections to correct location, in 3D


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_13 | Pages 43 - 43
1 Nov 2015
Su E
Full Access

Computer navigation is an attractive tool for use in total knee arthroplasty (TKA), as it is well known that alignment is important for the proper function of a total knee replacement. Malalignment of the prosthetic joint can lead to abnormal kinematics, unbalanced soft-tissues, and early loosening. Although there are no long term studies proving the clinical benefits of computer navigation in TKA, studies have shown that varus alignment of the tibial component is a risk factor for early loosening. A handheld, accelerometer based navigation unit for use in total knee replacement has recently become available to assist the surgeon in making the proximal tibial and distal femoral cuts. Studies have shown the accuracy to be comparable to large, console-based navigation units. Additionally, accuracy of cuts is superior to the use of traditional alignment guides, improving the percentage of cuts within 2 degrees of the desired alignment. Because the registration is based on the mechanical axis of the knee, anatomic variables such as femoral neck-shaft angle, femoral length, and presence of a tibial bow do not affect the results. The handheld aspect of this navigation unit allows its use without additional incisions or array attachment. Furthermore, the learning curve and usage time is minimal, supporting its use in primary TKA


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_1 | Pages 123 - 123
1 Feb 2015
Su E
Full Access

Computer navigation is an attractive tool for use in total knee arthroplasty (TKA), as it is well known that alignment is important for the proper function of a total knee replacement. Malalignment of the prosthetic joint can lead to abnormal kinematics, unbalanced soft-tissues, and early loosening. Although there are no long term studies proving the clinical benefits of computer navigation in TKA, studies have shown that varus alignment of the tibial component is a risk factor for early loosening. A handheld, accelerometer based navigation unit for use in total knee replacement has recently become available to assist the surgeon in making the proximal tibial and distal femoral cuts. Studies have shown the accuracy to be comparable to large, console-based navigation units. Additionally, accuracy of cuts is superior to the use of traditional alignment guides, improving the percentage of cuts within 2 degrees of the desired alignment. Because the registration is based on the mechanical axis of the knee, anatomic variables such as femoral neck-shaft angle, femoral length, and presence of a tibial bow do not affect the results. The handheld aspect of this navigation unit allows its use without additional incisions or array attachment. Furthermore, the learning curve and usage time is minimal, supporting its use in primary TKA


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_16 | Pages 66 - 66
1 Dec 2015
Bondarev O Sitnik A Volotovski P
Full Access

Problems of infected non-unions include not only infection and impossibility of weight-bearing, but also restricted ROM and compromised soft-tissues as result of trauma and previous surgeries. In such cases, treatment is long and difficult both for patient and treating surgeon. This study was performed to evaluate the efficacy of using antibiotic-impregnated cement locked nails for management of this condition. The study included 28 patients with infected non-unions of femur (18) and tibia (10) treated from 01.2009 to 11.2013. Mean time from the injury to AB-cement nailing was 16.5(9–27) months. 4/18 femoral and 5/10 tibial fractures were open. Other fractures were closed and infected non-union developed as complication of previous surgeries: IM-nailing, ORIF or Ilizarov external fixation. Fistulas were revealed in all patients, but have closed by the time of AB-cement nailing in 18 cases. Pre- and intraoperative cultures revealed S.aureus in 18, S.epidermidis in 5, no grows in 5 cases. Solid stainless-steel locked nails (SIGN) were coated with AB-cement intraoperatively. Full weight-bearing was allowed 3 months after surgery. Follow-upwas performed in 6, 12, 24 and 52 weeks. One year after surgery, X-ray revealed bone union in 25 (89.3%) patients and all 28 (100%) patients were full weight-bearing. In 3 (10.7%) cases, X-ray has revealed evident fracture line. Open fistulas were found in 4(14.3%) patients and required hardware removal and debridment. AB-cement locked nailing achieved elimination of infection and fracture healing in the majority of patients. This method can be considered as effective and requires further studies


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 131 - 131
1 Jan 2016
Fitzpatrick CK Clary C Nakamura T Rullkoetter P
Full Access

Introduction. The current standard for alignment in total knee arthroplasty (TKA) is neutral mechanical axis within 3° of varus or valgus deviation [1]. This configuration has been shown to reduce wear and optimally distribute load on the polyethylene insert [2]. Two key factors (patient-specific hip-knee-ankle (HKA) angle and surgical component alignment) influence load distribution, kinematics and soft-tissue strains across the tibiofemoral (TF) joint. Improvements in wear characteristics of TKA materials have facilitated a trend for restoring the anatomic joint line [3]. While anatomic component alignment may aid in restoring more natural kinematics, the influence on joint loads and soft-tissue strains should be evaluated. The purpose of the current study was to determine the effect of varus component alignment in combination with a variety of HKA limb alignments on joint kinematics, loads and soft-tissue strain. Methods. A dynamic three-dimensional finite element model of the lower limb of a TKA patient was developed. Detailed description of the model has been previously published [4]. The model included femur, tibia and patella bones, TF ligaments, patellar tendon, quadriceps and hamstrings, and was virtually implanted with contemporary cruciate-retaining fixed-bearing TKA components. The model was initially aligned in ideal mechanical alignment with neutral HKA limb alignment. A design-of-experiments (DOE) study was performed whereby component placement was altered from neutral to 3° and 7° varus alignment, and HKA angle was altered from neutral to ±3° and ±7° (valgus and varus) (Figure 1). Results. HKA angle has a greater influence on kinematics, particularly PF medial-lateral (M-L) translation in early flexion and TF internal-external (I-E) rotation; at 60° flexion change in TF I-E rotation due to HKA angle was 12.4° compared to change due to component V-V alignment of 2.3° (Figure 1). Component alignment was the main factor in overall TF loads; varus component alignment increased the medial force, external torque and valgus torque acting on the insert. Shear force at the bone-implant interface increased by 15% (∼90N) with varus component rotation of 7°. Varus component alignment increased forces in the lateral structures and reduced forces in the medial structures (Figure 2). Both valgus HKA angle and varus component alignment altered M-L load distribution by reducing medial forces and increasing lateral forces (Figure 3). Discussion. Placement of TKA components in anatomic alignment has potential to better integrate the implants with the soft-tissues of the joint and may better reproduce natural kinematics. However, varus component alignment in conjunction with valgus HKA limb alignment substantially alters M-L distribution of load across the condyles, increasing the load on the lateral condyle. Varus component alignment will result in load distributions which are different from their mechanically aligned counterparts. As such, pre-clinical evaluation of components used in varus alignment should ensure that components are robust to loading conditions which will be encountered across the range of TKA patient HKA alignments


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 37 - 37
1 Jan 2016
Anderson C Gustke KA Roche M Golladay G Meere P Elson L
Full Access

INTRODUCTION. Patient-reported satisfaction is a critical measure in understanding the clinical success of total knee arthroplasty. Yet, satisfaction levels in TKA patients are generally lower than THA patients; and surgeon-patient agreeability regarding clinical success is typically in discordance. Thus, the purpose of this evaluation was to report on the one-year satisfaction data of a group of sensor-assisted TKA patients, and compare that data to the average satisfaction reported in literature, as measured by a meta-analysis. METHODS. One hundred and thirty five patients received TKA utilizing intra-operative sensing technology to evaluate soft-tissue balance as part of a prospective multicenter study. Patients were classified by two groups: “balanced” and “unbalanced”. Quantitative “balance” was defined as a mediolateral intercompartmental loading difference of ≤ 15 pounds; all loading exceeding 15 pounds was classified as “unbalanced”. At the one-year follow-up visit, a 7-question patient satisfaction survey was administered. The answering schema of this survey was modeled using a modified five-point Likert scale, ranging from “True” to “False” (or “Very Satisfied” to “Very Dissatisfied,” where appropriate). A meta-analysis of literature was performed and studies selected for inclusion in this analysis were required to meet the following criteria: all patients were in receipt of a primary TKA; satisfaction data was collected post-operatively; and the proportion of patients who were “satisfied” to “very satisfied” was statistically described. RESULTS. The overall satisfaction of sensor-assisted patients—indicating “satisfied” to “very satisfied”—at one-year, was 94.2%. The satisfaction levels, stratified by “balanced” and “unbalanced” patients, was 96.7% and 82.1%, respectively. The difference between the satisfaction of balanced and unbalanced patients is statistically significant (P=0.043). Twelve studies were included in the meta-analysis, which yielded a significant amount of homogeneity (B-F=3.048; homogeneity<0.001; df=11) [Figure 1]. The average satisfaction reported in literature for TKA patients is 81%, which is 16% lower than the balanced patients in the prospective patient group (P<0.001). It was found that, on average, 81% of TKA patients, as reported in the included meta-analysis literature, were “satisfied” to “very satisfied”. This represents a 16% decrease from the balanced cohort evaluated in this study (P=0.001). The average satisfaction reported in literature was more in agreement with the unbalanced cohort (82.1%). DISCUSSION. Quantifiably balanced TKA patients, verified by intraoperative sensors, exhibited significantly higher satisfaction than unbalanced patients at 1- year post-operatively (P<0.001). Specifically, the number of satisfied, balanced patients was 14.6% higher than satisfied unbalanced patients. The meta-analysis provided the opportunity to reasonably compare the average satisfaction across all included literature. The highest reported satisfaction among the evaluated literature was 90.3%, which is still 6.4% lower than the balanced patient group (P=0.045). The results of this study suggest that there may be a way to improve patient satisfaction in TKA. By verifiably balancing soft-tissues of the sensor-assisted TKA group, marked improvement in satisfaction scores was seen at one year. These trends toward better function and higher satisfaction are promising for the future of clinical success in TKA. Longer follow-up is ongoing and will be used to determine the longevity of this encouraging trend


Bone & Joint Open
Vol. 4, Issue 4 | Pages 250 - 261
7 Apr 2023
Sharma VJ Adegoke JA Afara IO Stok K Poon E Gordon CL Wood BR Raman J

Aims

Disorders of bone integrity carry a high global disease burden, frequently requiring intervention, but there is a paucity of methods capable of noninvasive real-time assessment. Here we show that miniaturized handheld near-infrared spectroscopy (NIRS) scans, operated via a smartphone, can assess structural human bone properties in under three seconds.

Methods

A hand-held NIR spectrometer was used to scan bone samples from 20 patients and predict: bone volume fraction (BV/TV); and trabecular (Tb) and cortical (Ct) thickness (Th), porosity (Po), and spacing (Sp).


Bone & Joint Open
Vol. 4, Issue 3 | Pages 146 - 157
7 Mar 2023
Camilleri-Brennan J James S McDaid C Adamson J Jones K O'Carroll G Akhter Z Eltayeb M Sharma H

Aims

Chronic osteomyelitis (COM) of the lower limb in adults can be surgically managed by either limb reconstruction or amputation. This scoping review aims to map the outcomes used in studies surgically managing COM in order to aid future development of a core outcome set.

Methods

A total of 11 databases were searched. A subset of studies published between 1 October 2020 and 1 January 2011 from a larger review mapping research on limb reconstruction and limb amputation for the management of lower limb COM were eligible. All outcomes were extracted and recorded verbatim. Outcomes were grouped and categorized as per the revised Williamson and Clarke taxonomy.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 285 - 285
1 Mar 2013
Karbach L Matthies A Ismaily S Gold J Hart A Noble P
Full Access

Introduction. A disturbing prevalence of short-term failures of metal-on-metal (MoM) hip resurfacings has been reported by joint registries. These cases have been primarily due to painful inflammatory reactions and, in extreme cases, formation of pseudotumors within periarticular soft-tissues. The likely cause is localized loading of the acetabular shell leading to “edge wear” which is often seen after precise measurement of the bearing surfaces of retrieved components. Factors contributing to edge wear of metal-on-metal arthroplasties are thought to include adverse cup orientation, patient posture, and the direction of hip loading. The purpose of this study was to investigate the role of different functional activities in edge loading of hip resurfacing prostheses as a function of cup inclination and version. Methods. We developed a computer model of the hip joint through reconstruction of CT scans of a proto-typical pelvis and femur and virtually implanting a hip resurfacing prosthesis in an ideal position. Using this model, we examined the relationship between the resultant hip force vector and the edge of the acetabular shell during walking, stair ascent and descent, and getting in and out of a chair. Load data was derived from 5 THR patients implanted with instrumented hip prostheses (Bergmann et al). We calculated the distance from the edge of the shell to the point of intersection of the load vector and the bearing surface for cup orientations ranging from 40 to 70 degrees of inclination, and 0 to 40 degrees of anteversion. Results. The low flexion activities of normal gait, stair climbing and stair descent did not demonstrate values consistent with edge loading unless the shell was oriented in 70° inclination and 20° version. Conversely, the occurrence of edge loading was predicted during sit to stand and stand to sit activities for every orientation of the implanted components (Figure 1). Cup anteversion was not a consistent predictor of edge loading during gait, stair climbing and stair descent; but did affect the distance to the edge of the cup in sit-to-stand and stand-to-sit activities. Conclusions. We demonstrated that normal gait, stair-climbing and stair descent do not appear to explain the edge wear seen in many of the retrieved resurfacing components. Edge loading does occur during sit to stand and stand to sit activities in virtually any cup orientation and is postulated as the missing factor explaining component wear. In our work we have effectively demonstrated that, in the absence of other confounding factors, edge loading and pseudotumor formation can happen in even the “safe” acetabular orientations. We propose this as a new way to understand the forces upon the components following HRA