Advertisement for orthosearch.org.uk
Results 1 - 20 of 144
Results per page:
Bone & Joint Open
Vol. 5, Issue 7 | Pages 612 - 620
19 Jul 2024
Bada ES Gardner AC Ahuja S Beard DJ Window P Foster NE

Aims. People with severe, persistent low back pain (LBP) may be offered lumbar spine fusion surgery if they have had insufficient benefit from recommended non-surgical treatments. However, National Institute for Health and Care Excellence (NICE) 2016 guidelines recommended not offering spinal fusion surgery for adults with LBP, except as part of a randomized clinical trial. This survey aims to describe UK clinicians’ views about the suitability of patients for such a future trial, along with their views regarding equipoise for randomizing patients in a future clinical trial comparing lumbar spine fusion surgery to best conservative care (BCC; the FORENSIC-UK trial). Methods. An online cross-sectional survey was piloted by the multidisciplinary research team, then shared with clinical professional groups in the UK who are involved in the management of adults with severe, persistent LBP. The survey had seven sections that covered the demographic details of the clinician, five hypothetical case vignettes of patients with varying presentations, a series of questions regarding the preferred management, and whether or not each clinician would be willing to recruit the example patients into future clinical trials. Results. There were 72 respondents, with a response rate of 9.0%. They comprised 39 orthopaedic spine surgeons, 17 neurosurgeons, one pain specialist, and 15 allied health professionals. Most respondents (n = 61,84.7%) chose conservative care as their first-choice management option for all five case vignettes. Over 50% of respondents reported willingness to randomize three of the five cases to either surgery or BCC, indicating a willingness to participate in the future randomized trial. From the respondents, transforaminal interbody fusion was the preferred approach for spinal fusion (n = 19, 36.4%), and the preferred method of BCC was a combined programme of physical and psychological therapy (n = 35, 48.5%). Conclusion. This survey demonstrates that there is uncertainty about the role of lumbar spine fusion surgery and BCC for a range of example patients with severe, persistent LBP in the UK. Cite this article: Bone Jt Open 2024;5(7):612–620


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_9 | Pages 22 - 22
1 Oct 2022
Owen D Snuggs J Michael A Cole A Chiverton N Breakwell L Sammon C Le Maitre C
Full Access

Background. Current clinical treatment for spinal instability requires invasive spinal fusion with cages and screw instrumentation. We previously reported a novel injectable hydrogel (Bgel), which supports the delivery and differentiation of mesenchymal stem cells (MSCs) to bone forming cells and supports bone formation in vivo. Here, we investigated whether this system could be utilised to induce bone formation within intervertebral disc tissue as a potential injectable spinal fusion approach. Methodology. Bovine and Human Nucleus pulpous tissue explants were injected with Bgel with and without MSCs. Tissue samples were cultured under hypoxia (5%) in standard culture media for 4 weeks. Cell viability, histological assessment of matrix deposition, calcium formation, and cell phenotype analysis using immunohistochemistry for NP matrix and bone markers. Results. Following injection of B-gel into tissue explants following culture for 4 weeks, cells were visualized within the regions of the B-gel. Demonstrating that native cells were able to migrate into regions of B-gel. Increased collagen deposition was seen in tissue explants injected with Bgel, with increased collagen type I and X but decreased collagen type II staining in explants injected with Bgel. Tissue explants, in the absence of Bgel, showed limited calcium deposition, which was increased in B-gel injected explants. Furthermore, disc cells increased expression of bone markers (alkaline phosphatase & osteocalcin), but decreased NP matrix (Aggrecan and Collagen type II) following Bgel injection. Conclusion. This system could have potential to support spinal fusion via direct injection into the disc. Conflict of interest: C Le Maitre & C Sammon are inventors on the hydrogel discussed. Funding: This work was funded by GrowMed Tech Proof of Concept funding


The Bone & Joint Journal
Vol. 106-B, Issue 10 | Pages 1176 - 1181
1 Oct 2024
Helenius L Gerdhem P Ahonen M Syvänen J Jalkanen J Nietosvaara Y Helenius I

Aims. Closed suction subfascial drainage is widely used after instrumented posterior spinal fusion in patients with a spinal deformity. The aim of this study was to determine the effect of this wound drainage on the outcomes in patients with adolescent idiopathic scoliosis (AIS). This was a further analysis of a randomized, multicentre clinical trial reporting on patients after posterior spinal fusion using segmental pedicle screw instrumentation. In this study the incidence of deep surgical site infection (SSI) and chronic postoperative pain at two years’ follow-up are reported. Methods. We conducted a randomized, multicentre clinical trial on adolescents undergoing posterior spinal fusion for AIS using segmental pedicle screw instrumentation. A total of 90 consecutive patients were randomized into a ‘drain’ or ‘no drain’ group at the time of wound closure, using the sealed envelope technique (1:1). The primary outcomes in the initial study were the change in the level of haemoglobin in the blood postoperatively and total blood loss. A secondary outcome was the opioid consumption immediately after surgery. The aim of this further study was to report the rate of deep SSI and persistent postoperative pain, at two years' follow-up. Results. As previously reported, the mean 48-hour opioid consumption was significantly higher in the no drain group (2.0 mg/kg (SD 0.8) vs 1.4 mg/kg (SD 0.7); p = 0.005). There were no delayed deep SSIs. At two years’ follow-up, the mean Scoliosis Research Society 24-item questionnaire (SRS-24) total score did not differ between the groups (4.11 (SD 0.47) vs 4.16 (SD 0.33); p = 0.910). The mean SRS-24 pain score was 4.28 (SD 0.48) in the no drain group compared with 4.33 (SD 0.66) in the drain group (p = 0.245). Seven patients (19%) in the no drain group and six in the drain group (14%) reported moderate to severe pain (numerical rating scale ≥ 4) at two years’ follow-up (p = 0.484). The general self-image domain score was significantly higher in the no drain group compared with the drain group (4.02 (SD 0.74) vs 4.59 (SD 0.54); p < 0.001). Conclusion. The main finding in this study was that more severe pain immediately after surgery did not result in a higher incidence of chronic pain in the no drain group compared with the drain group. Back pain and health-related quality of life at two years’ follow-up did not differ between the groups. The patient-reported self-image domain was significantly better in the no drain group compared with the drain group. Cite this article: Bone Joint J 2024;106-B(10):1176–1181


The Bone & Joint Journal
Vol. 104-B, Issue 1 | Pages 112 - 119
1 Jan 2022
Pietton R Bouloussa H Langlais T Taytard J Beydon N Skalli W Vergari C Vialle R

Aims. This study addressed two questions: first, does surgical correction of an idiopathic scoliosis increase the volume of the rib cage, and second, is it possible to evaluate the change in lung function after corrective surgery for adolescent idiopathic scoliosis (AIS) using biplanar radiographs of the ribcage with 3D reconstruction?. Methods. A total of 45 patients with a thoracic AIS which needed surgical correction and fusion were included in a prospective study. All patients underwent pulmonary function testing (PFT) and low-dose biplanar radiographs both preoperatively and one year after surgery. The following measurements were recorded: forced vital capacity (FVC), slow vital capacity (SVC), and total lung capacity (TLC). Rib cage volume (RCV), maximum rib hump, main thoracic curve Cobb angle (MCCA), medial-lateral and anteroposterior diameter, and T4-T12 kyphosis were calculated from 3D reconstructions of the biplanar radiographs. Results. All spinal and thoracic measurements improved significantly after surgery (p < 0.001). RCV increased from 4.9 l (SD 1) preoperatively to 5.3 l (SD 0.9) (p < 0.001) while TLC increased from 4.1 l (SD 0.9) preoperatively to 4.3 l (SD 0.8) (p < 0.001). RCV was correlated with all functional indexes before and after correction of the deformity. Improvement in RCV was weakly correlated with correction of the mean thoracic Cobb angle (p = 0.006). The difference in TLC was significantly correlated with changes in RCV (p = 0.041). It was possible to predict postoperative TLC from the postoperative RCV. Conclusion. 3D rib cage assessment from biplanar radiographs could be a minimally invasive method of estimating pulmonary function before and after spinal fusion in patients with an AIS. The 3D RCV reflects virtual chest capacity and hence pulmonary function in this group of patients. Cite this article: Bone Joint J 2022;104-B(1):112–119


The Bone & Joint Journal
Vol. 102-B, Issue 12 | Pages 1717 - 1722
1 Dec 2020
Kang T Park SY Lee JS Lee SH Park JH Suh SW

Aims. As the population ages and the surgical complexity of lumbar spinal surgery increases, the preoperative stratification of risk becomes increasingly important. Understanding the risks is an important factor in decision-making and optimizing the preoperative condition of the patient. Our aim was to determine whether the modified five-item frailty index (mFI-5) and nutritional parameters could be used to predict postoperative complications in patients undergoing simple or complex lumbar spinal fusion. Methods. We retrospectively reviewed 584 patients who had undergone lumbar spinal fusion for degenerative lumbar spinal disease. The 'simple' group (SG) consisted of patients who had undergone one- or two-level posterior lumbar fusion. The 'complex' group (CG) consisted of patients who had undergone fusion over three or more levels, or combined anterior and posterior surgery. On admission, the mFI-5 was calculated and nutritional parameters collected. Results. Complications occurred in 9.3% (37/396) of patients in the SG, and 10.1% (19/167) of patients in the CG. In the SG, the important predictors of complications were age (odds ratio (OR) 1.036; p = 0.002); mFI-5 (OR 1.026 to 2.411, as score increased to 1 ≥ 2 respectively. ;. p = 0.023); albumin (OR 11.348; p < 0.001); vitamin D (OR 2.185; p = 0.032); and total lymphocyte count (OR 1.433; p = 0.011) . In the CG, the predictors of complications were albumin (OR 9.532; p = 0.002) and vitamin D (OR 3.815; p = 0.022). Conclusion. The mFI-5 and nutritional status were effective predictors of postoperative complications in the SG, but only nutritional status was successful in predicting postoperative complications in the CG. The complexity of the surgery, as well as the preoperative frailty and nutritional status of patients, should be considered when determining if it is safe to proceed with lumbar spinal fusion. Cite this article: Bone Joint J 2020;102-B(12):1717–1722


The Bone & Joint Journal
Vol. 106-B, Issue 7 | Pages 713 - 719
1 Jul 2024
Patel MS Shah S Elkazaz MK Shafafy M Grevitt MP

Aims. Historically, patients undergoing surgery for adolescent idiopathic scoliosis (AIS) have been nursed postoperatively in a critical care (CC) setting because of the challenges posed by prone positioning, extensive exposures, prolonged operating times, significant blood loss, major intraoperative fluid shifts, cardiopulmonary complications, and difficulty in postoperative pain management. The primary aim of this paper was to determine whether a scoring system, which uses Cobb angle, forced vital capacity (FVC), forced expiratory volume in one second (FEV1), and number of levels to be fused, is a valid method of predicting the need for postoperative critical care in AIS patients who are to undergo scoliosis correction with posterior spinal fusion (PSF). Methods. We retrospectively reviewed all AIS patients who had undergone PSF between January 2018 and January 2020 in a specialist tertiary spinal referral centre. All patients were assessed preoperatively in an anaesthetic clinic. Postoperative care was defined as ward-based (WB) or critical care (CC), based on the preoperative FEV1, FVC, major curve Cobb angle, and the planned number of instrumented levels. Results. Overall, 105 patients were enrolled. Their mean age was 15.5 years (11 to 25) with a mean weight of 55 kg (35 to 103). The mean Cobb angle was 68° (38° to 122°). Of these, 38 patients were preoperatively scored to receive postoperative CC. However, only 19% of the cohort (20/105) actually needed CC-level support. Based on these figures, and an average paediatric intensive care unit stay of one day before stepdown to ward-based care, the potential cost-saving on the first postoperative night for this cohort was over £20,000. There was no statistically significant difference between the Total Pathway Score (TPS), the numerical representation of the four factors being assessed, and the actual level of care received (p = 0.052) or the American Society of Anesthesiologists grade (p = 0.187). Binary logistic regression analysis of the TPS variables showed that the preoperative Cobb angle was the only variable which significantly predicted the need for critical care. Conclusion. Most patients undergoing posterior fusion surgery for AIS do not need critical care. Of the readily available preoperative measures, the Cobb angle is the only predictor of the need for higher levels of care, and has a threshold value of 74.5°. Cite this article: Bone Joint J 2024;106-B(7):713–719


Aims. Psychoeducative prehabilitation to optimize surgical outcomes is relatively novel in spinal fusion surgery and, like most rehabilitation treatments, they are rarely well specified. Spinal fusion patients experience anxieties perioperatively about pain and immobility, which might prolong hospital length of stay (LOS). The aim of this prospective cohort study was to determine if a Preoperative Spinal Education (POSE) programme, specified using the Rehabilitation Treatment Specification System (RTSS) and designed to normalize expectations and reduce anxieties, was safe and reduced LOS. Methods. POSE was offered to 150 prospective patients over ten months (December 2018 to November 2019) Some chose to attend (Attend-POSE) and some did not attend (DNA-POSE). A third independent retrospective group of 150 patients (mean age 57.9 years (SD 14.8), 50.6% female) received surgery prior to POSE (pre-POSE). POSE consisted of an in-person 60-minute education with accompanying literature, specified using the RTSS as psychoeducative treatment components designed to optimize cognitive/affective representations of thoughts/feelings, and normalize anxieties about surgery and its aftermath. Across-group age, sex, median LOS, perioperative complications, and readmission rates were assessed using appropriate statistical tests. Results. In all, 65 (43%) patients (mean age 57.4 years (SD 18.2), 58.8% female) comprised the Attend-POSE, and 85 (57%) DNA-POSE (mean age 54.9 years (SD 15.8), 65.8% female). There were no significant between-group differences in age, sex, surgery type, complications, or readmission rates. Median LOS was statistically different across Pre-POSE (5 days ((interquartile range (IQR) 3 to 7)), Attend-POSE (3 (2 to 5)), and DNA-POSE (4 (3 to 7)), (p = 0.014). Pairwise comparisons showed statistically significant differences between Pre-POSE and Attend-POSE LOS (p = 0.011), but not between any other group comparison. In the Attend-POSE group, there was significant change toward greater surgical preparation, procedural familiarity, and less anxiety. Conclusion. POSE was associated with a significant reduction in LOS for patients undergoing spinal fusion surgery. Patients reported being better prepared for, more familiar, and less anxious about their surgery. POSE did not affect complication or readmission rates, meaning its inclusion was safe. However, uptake (43%) was disappointing and future work should explore potential barriers and challenges to attending POSE. Cite this article: Bone Jt Open 2022;3(2):135–144


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_15 | Pages 11 - 11
7 Aug 2024
Warren JP Khan A Mengoni M
Full Access

Objectives. Understanding lumbar facet joint involvement and biomechanical changes post spinal fusion is limited. This study aimed to establish an in vitro model assessing mechanical effects of fusion on human lumbar facet joints, employing synchronized motion, pressure, and stiffness analysis. Methods and Results. Seven human lumbar spinal units (age 54 to 92, ethics 15/YH/0096) underwent fusion via a partial nucleotomy model mimicking a lateral cage approach with PMMA cement injection. Mechanical testing pre and post-fusion included measuring compressive displacement and load, local motion capture, and pressure mapping at the facet joints. pQCT imaging (82 microns isotropic) was carried out at each stage to assess the integrity of the vertebral endplates and quantify the amount of cement injected. Before fusion, relative facet joint displacement (6.5 ± 4.1 mm) at maximum load (1.1 kN) exceeded crosshead displacement (3.9 ± 1.5 mm), with loads transferred across both facet joints. After fusion, facet displacement (2.0 ± 1.2 mm) reduced compared to pre-fusion, as was the crosshead displacement (2.2 ± 0.6 mm). Post-fusion loads (71.4 ± 73.2 N) transferred were reduced compared to pre-fusion levels (194.5 ± 125.4 N). Analysis of CT images showed no endplate damage post-fusion, whilst the IVD tissue: cement volume ratio did not correlate with the post-fusion behaviour of the specimens. Conclusion. An in vitro model showed significant facet movement reduction with stand-alone interbody cage placement. This technique identifies changes in facet movement post-fusion, potentially contributing to subsequent spinal degeneration, highlighting its utility in biomechanical assessment. Conflicts of interest. None. Sources of funding. This work was funded by EPSRC, under grant EP/W015617/1


The Bone & Joint Journal
Vol. 97-B, Issue 10 | Pages 1395 - 1404
1 Oct 2015
Lingutla KK Pollock R Benomran E Purushothaman B Kasis A Bhatia CK Krishna M Friesem T

The aim of this study was to determine whether obesity affects pain, surgical and functional outcomes following lumbar spinal fusion for low back pain (LBP). A systematic literature review and meta-analysis was made of those studies that compared the outcome of lumbar spinal fusion for LBP in obese and non-obese patients. A total of 17 studies were included in the meta-analysis. There was no difference in the pain and functional outcomes. Lumbar spinal fusion in the obese patient resulted in a statistically significantly greater intra-operative blood loss (weighted mean difference: 54.04 ml; 95% confidence interval (CI) 15.08 to 93.00; n = 112; p = 0.007) more complications (odds ratio: 1.91; 95% CI 1.68 to 2.18; n = 43858; p < 0.001) and longer duration of surgery (25.75 mins; 95% CI 15.61 to 35.90; n = 258; p < 0.001). Obese patients have greater intra-operative blood loss, more complications and longer duration of surgery but pain and functional outcome are similar to non-obese patients. Based on these results, obesity is not a contraindication to lumbar spinal fusion. Cite this article: Bone Joint J 2015;97-B:1395–1404


The Bone & Joint Journal
Vol. 98-B, Issue 3 | Pages 395 - 401
1 Mar 2016
Helenius I Keskinen H Syvänen J Lukkarinen H Mattila M Välipakka J Pajulo O

Aims. In a multicentre, randomised study of adolescents undergoing posterior spinal fusion for idiopathic scoliosis, we investigated the effect of adding gelatine matrix with human thrombin to the standard surgical methods of controlling blood loss. Patients and Methods. Patients in the intervention group (n = 30) were randomised to receive a minimum of two and a maximum of four units of gelatine matrix with thrombin in addition to conventional surgical methods of achieving haemostasis. Only conventional surgical methods were used in the control group (n = 30). We measured the intra-operative and total blood loss (intra-operative blood loss plus post-operative drain output). Results. Each additional hour of operating time increased the intra-operative blood loss by 356.9 ml (p < 0.001) and the total blood loss by 430.5 ml (p < 0.001). Multiple linear regression analysis showed that the intervention significantly decreased the intra-operative (-171 ml, p = 0.025) and total blood loss (-177 ml, p = 0.027). The decrease in haemoglobin concentration from the day before the operation to the second post-operative day was significantly smaller in the intervention group (-6 g/l, p = 0.013) than in the control group. . Conclusion. The addition of gelatine matrix with human thrombin to conventional methods of achieving haemostasis reduces both the intra-operative blood loss and the decrease in haemoglobin concentration post-operatively in adolescents undergoing posterior spinal fusion for idiopathic scoliosis. Take home message: A randomised clinical trial showed that gelatine matrix with human thrombin decreases intra-operative blood loss by 30% when added to traditional surgical haemostatic methods in adolescents undergoing posterior spinal fusion for idiopathic scoliosis. Cite this article: Bone Joint J 2016;98-B:395–401


Bone & Joint Research
Vol. 5, Issue 4 | Pages 145 - 152
1 Apr 2016
Bodalia PN Balaji V Kaila R Wilson L

Objectives. We performed a systematic review of the literature to determine the safety and efficacy of bone morphogenetic protein (BMP) compared with bone graft when used specifically for revision spinal fusion surgery secondary to pseudarthrosis. Methods. The MEDLINE, EMBASE and Cochrane Library databases were searched using defined search terms. The primary outcome measure was spinal fusion, assessed as success or failure in accordance with radiograph, MRI or CT scan review at 24-month follow-up. The secondary outcome measure was time to fusion. Results. A total of six studies (three prospective and three retrospective) reporting on the use of BMP2 met the inclusion criteria (203 patients). Of these, four provided a comparison of BMP2 and bone graft whereas the other two solely investigated the use of BMP2. The primary outcome was seen in 92.3% (108/117) of patients following surgery with BMP2. Although none of the studies showed superiority of BMP2 to bone graft for fusion, its use was associated with a statistically quicker time to achieving fusion. BMP2 did not appear to increase the risk of complication. Conclusion. The use of BMP2 is both safe and effective within the revision setting, ideally in cases where bone graft is unavailable or undesirable. Further research is required to define its optimum role. Cite this article: Mr P. Bodalia. Effectiveness and safety of recombinant human bone morphogenetic protein-2 for adults with lumbar spine pseudarthrosis following spinal fusion surgery: A systematic review. Bone Joint Res 2016;5:145–152. DOI: 10.1302/2046-3758.54.2000418


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_10 | Pages 8 - 8
1 Oct 2019
Owen D Snuggs J Partridge S Sammon C Le Maitre C
Full Access

Introduction. We have developed a new synthetic hydrogel that can be injected directly into the intervertebral disc (IVD) without major surgery. Designed to improve fixation of joint prosthesis, support bone healing or improve spinal fusion, the liquid may support the differentiation of native IVD cells towards osteoblast-like cells cultured within the hydrogel. Here we investigate the potential of this gel system (Bgel) to induce bone formation within intervertebral disc tissue. Methods. IVD tissue obtained from patients undergoing discectomy, or cadaveric samples, were cultured within a novel explant device. The hydrogel was injected, with and without mesenchymal stem cells (MSCs), and cultured under hypoxia, to mimic the degenerate IVD environment, for 4 weeks. Explants were embedded to wax and native cellular migration into the hydrogel was investigated, together with cellular phenotype and matrix deposition. Results. Increased collagen deposition was seen in tissue explants injected with Bgel, with evidence of elevated native cell migration towards the hydrogel. Increased collagen staining was seen in explants injected with Bgel together with MSCs. Alizarin red staining was utilised to investigate calcium deposition. Tissue explants, in the absence of Bgel, showed limited calcium deposition. This was increased in hydrogel-treated samples, with large clumping regions in the tissue that was injected with Bgel and MSCs. Conclusion. The injection of our synthetic hydrogel into disc tissue explants increased the amount of collagen and calcium deposition. This was further enhanced by the incorporation of MSCs, suggesting the promotion of bone formation. Current work is investigating phenotypic markers for bone formation within these tissues. CS and CLM have a patent on the hydrogel system described in this abstract. Funded by EPSRC and Grow MedTech


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_X | Pages 116 - 116
1 Apr 2012
Pickard R Sharma A Reynolds J Nnadi C Lavy C Bowden G Wilson-MacDonald J Fairbank J
Full Access

A literature review of bone graft substitutes for spinal fusion was undertaken from peer reviewed journals to form a basis for guidelines on their clinical use. A PubMed search of peer reviewed journals between Jan 1960 and Dec 2009 for clinical trials of bone graft substitutes in spinal fusion was performed. Emphasis was placed on RCTs. Small and duplicated RCTs were excluded. If no RCTs were available the next best clinical evidence was assessed. Data were extracted for fusion rates and complications. Of 929 potential spinal fusion studies, 7 RCTs met the inclusion criteria for BMP-2, 3 for BMP-7, 2 for Tricalcium Phosphate and 1 for Tricalcium Phosphate/Hydroxyapatite (TCP/HA). No clinical RCTs were found for Demineralised Bone Matrix (DBM), Calcium Sulphate or Calcium Silicate. There is strong evidence that BMP-2 with TCP/HA achieves similar or higher spinal fusion rates than autograft alone. BMP-7 achieved similar results to autograft. 3 RCTs support the use of TCP or TCP/HA and autograft as a graft extender with similar results to autograft alone. The best clinical evidence to support the use of DBMs are case control studies. The osteoinductive potential of DBM appears to be very low however. There are no clinical studies to support the use of Calcium Silicate. The current literature supports the use of BMP-2 with HA/TCP as a graft substitute. TCP or HA/TCP with Autograft is supported as a graft extender. There is not enough clinical evidence to support other bone graft substitutes. This study did not require ethics approval and no financial support was received


Bone & Joint Research
Vol. 7, Issue 1 | Pages 28 - 35
1 Jan 2018
Huang H Nightingale RW Dang ABC

Objectives. Loss of motion following spine segment fusion results in increased strain in the adjacent motion segments. However, to date, studies on the biomechanics of the cervical spine have not assessed the role of coupled motions in the lumbar spine. Accordingly, we investigated the biomechanics of the cervical spine following cervical fusion and lumbar fusion during simulated whiplash using a whole-human finite element (FE) model to simulate coupled motions of the spine. Methods. A previously validated FE model of the human body in the driver-occupant position was used to investigate cervical hyperextension injury. The cervical spine was subjected to simulated whiplash exposure in accordance with Euro NCAP (the European New Car Assessment Programme) testing using the whole human FE model. The coupled motions between the cervical spine and lumbar spine were assessed by evaluating the biomechanical effects of simulated cervical fusion and lumbar fusion. Results. Peak anterior longitudinal ligament (ALL) strain ranged from 0.106 to 0.382 in a normal spine, and from 0.116 to 0.399 in a fused cervical spine. Strain increased from cranial to caudal levels. The mean strain increase in the motion segment immediately adjacent to the site of fusion from C2-C3 through C5-C6 was 26.1% and 50.8% following single- and two-level cervical fusion, respectively (p = 0.03, unpaired two-way t-test). Peak cervical strains following various lumbar-fusion procedures were 1.0% less than those seen in a healthy spine (p = 0.61, two-way ANOVA). Conclusion. Cervical arthrodesis increases peak ALL strain in the adjacent motion segments. C3-4 experiences greater changes in strain than C6-7. Lumbar fusion did not have a significant effect on cervical spine strain. Cite this article: H. Huang, R. W. Nightingale, A. B. C. Dang. Biomechanics of coupled motion in the cervical spine during simulated whiplash in patients with pre-existing cervical or lumbar spinal fusion: A Finite Element Study. Bone Joint Res 2018;7:28–35. DOI: 10.1302/2046-3758.71.BJR-2017-0100.R1


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 1 | Pages 43 - 47
1 Jan 1997
Minami A Kaneda K Satoh S Abumi K Kutsumi K

A vascularised fibular strut graft was used for anterior spinal fusion in 16 patients with spinal kyphosis. The procedure was abandoned in three because of difficulty in establishing a vascular anastomosis and in one because the grafted fibula dislodged two days after operation. One patient died after five days. Of the 11 remaining patients, there were seven males and four females. Their ages at the time of operation averaged 30.9 years (12 to 71). The number of vertebrae fused averaged 6.7 (5 to 9) and the length of fibula grafted averaged 10.9 cm (6.5 to 18). Average follow-up was 54 months (27 to 84). Bone union occurred at both ends of the grafted fibula in all 11 patients, with an average time to union of 5.5 months (3 to 8). We did not see a fracture of the grafted fibula. Two patients had postoperative complications; the graft dislodged in one and laryngeal oedema occurred two days after operation in the other. A vascularised fibular strut graft provides a biomechanically stable and long-standing support in spinal fusion because the weak phase of creeping substitution does not take place in the graft


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_6 | Pages 37 - 37
1 Feb 2016
Sedra F Wilson L
Full Access

Introduction:. Several reports showed superior fusion rates, as high as 100%, using rhBMP-2 with ALIF cages. This has led to the widespread off-label use of rhBMP-2 in several other lumbar fusion procedures. There is paucity of reports analysing the clinic-radiological outcome of using rhBMP-2 to promote bone union in cases of symptomatic pseudoarthosis following lumbar spine fusion. Methods:. 52 consecutive patients who underwent revision spinal surgery for symptomatic pseudoarthosis utilizing rhBMP-2 between 2008 and 2013 were included in the study. Demographic, and surgical data were collected from medical records. Functional outcomes were recorded using the ODI. All patients had preoperative fine-cut CT scan to confirm pseudoarthosis. Postoperative CT-scan at 6 months was routinely done to confirm fusion. Results:. Average age at time of revision surgery was 54years (range 28–73). Average follow up was 3 years 5 months (range 2–5 years). Overall fusion rate of 92.3% (48/52) was achieved. The average ODI has improved from 56% preoperatively to 49% postoperatively. We had 1 infection case, and 5 complications related to metalwork. One case with neuronal complications was recorded. No rhBMP-2 related complications. There was no record of heterotopic bone formation in the spinal canal or the neuroforamen. Conclusion:. Recombinant BMP-2 is a safe and effective adjunct to revision lumbar spinal fusion surgery to alleviate back pain symptoms from pseudoarthosis. The limitations of the study include: retrospective review, lack of matched cohort utilising iliac crest bone graft, and relatively short follow-up


The Bone & Joint Journal
Vol. 95-B, Issue 8 | Pages 1121 - 1126
1 Aug 2013
Núñez-Pereira S Pellisé F Rodríguez-Pardo D Pigrau C Bagó J Villanueva C Cáceres E

This study evaluates the long-term survival of spinal implants after surgical site infection (SSI) and the risk factors associated with treatment failure. . A Kaplan-Meier survival analysis was carried out on 43 patients who had undergone a posterior spinal fusion with instrumentation between January 2006 and December 2008, and who consecutively developed an acute deep surgical site infection. All were appropriately treated by surgical debridement with a tailored antibiotic program based on culture results for a minimum of eight weeks. A ‘terminal event’ or failure of treatment was defined as implant removal or death related to the SSI. The mean follow-up was 26 months (1.03 to 50.9). A total of ten patients (23.3%) had a terminal event. The rate of survival after the first debridement was 90.7% (95% confidence interval (CI) 82.95 to 98.24) at six months, 85.4% (95% CI 74.64 to 96.18) at one year, and 73.2% (95% CI 58.70 to 87.78) at two, three and four years. Four of nine patients required re-instrumentation after implant removal, and two of the four had a recurrent infection at the surgical site. There was one recurrence after implant removal without re-instrumentation. Multivariate analysis revealed a significant risk of treatment failure in patients who developed sepsis (hazard ratio (HR) 12.5 (95% confidence interval (CI) 2.6 to 59.9); p < 0.001) or who had > three fused segments (HR 4.5 (95% CI 1.25 to 24.05); p = 0.03). Implant survival is seriously compromised even after properly treated surgical site infection, but progressively decreases over the first 24 months. Cite this article: Bone Joint J 2013;95-B:1121–6


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_2 | Pages 21 - 21
1 Feb 2018
Koenders N Rushton A Verra M Willems P Hoogeboom T Staal J
Full Access

Purpose and background. Lumbar spinal fusion (LSF) is frequently and increasingly used in lumbar degenerative disorders despite conflicting results and recommendations. Further understanding of patient outcomes after LSF is required to inform decisions regarding surgery and to improve post-surgery management. The objective was to evaluate the course of pain and disability in patients with degenerative disorders of the lumbar spine (spinal stenosis, spondylolisthesis, disc herniation, discogenic low back pain) after first-time LSF. Methods and results. A systematic review and meta-analysis of pain and disability outcomes in prospective cohort studies after first time LSF for degenerative disorders. Two independent researchers searched key databases, determined study eligibility, extracted data and assessed risk of bias (modified Quality in Prognostic Studies tool). A third reviewer mediated at each stage. N weighted pooled estimates were calculated. Twenty-five articles (n=1,777 participants) were included. 17 studies were at unclear risk of bias and 8 at high risk. Back pain (12 studies) decreased modestly and irregularly at follow-up intervals. The n weighted mean VAS back pain decreased from 65.4 (±3.3) pre-surgery to 22.2 (±3.1) at 23 months, but then 45.0 (±not reported; 2 studies at risk of bias) at 42 months. In contrast, leg pain (12 studies) improved substantially short and long-term. Disability (20 studies) improved steadily over time with the exception of the 42-months and 48-months intervals. Conclusion. The overall improvement of leg pain and disability after first-time LSF in degenerative disorders is promising in contrast to back pain outcomes. Further research is needed to analyse outcomes in patients of different diagnostic subgroups. Conflicts of interest. None. Sources of funding. None


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 8 | Pages 1133 - 1136
1 Nov 2001
Parsch D Gaertner V Brocai DRC Carstens C

We have investigated the effect of multisegmental spinal fusion on the long-term functional and radiological outcome in patients with scoliosis. We compared these patients both with those whose spine had not been fused, and with a control group. We studied 68 patients with idiopathic scoliosis (34 operative and 34 non-operative) who had been followed up for a minimum of five years after treatment. They were matched for age (mean 44 years) and Cobb angle (mean 54°) at follow-up. An age- and gender-matched control group of 34 subjects was also recruited. All participants completed a questionnaire to assess spinal function and to grade the severity of back pain using a numerical rating scale. Radiographs of the spine were taken in the patients with scoliosis and lumbar degenerative changes were recorded. The spinal function scores for the patients with scoliosis who had had a fusion were similar to those who had not. Both scoliosis groups, however, had lower scores than the control group (p < 0.001). The frequency and severity of back pain were lower for patients with scoliosis and fusion than for those without, but higher for both scoliosis groups compared with the control group. Radiographs showed similar degenerative changes in both scoliosis groups


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_15 | Pages 19 - 19
7 Aug 2024
Foster NE Bada E Window P Stovell M Ahuja S Beard D Gardner A
Full Access

Background and Purpose

The UK's NIHR and Australia's NHMRC have funded two randomised controlled trials (RCTs) to determine if lumbar fusion surgery (LFS) is more effective than best conservative care (BCC) for adults with persistent, severe low back pain (LBP) attributable to lumbar spine degeneration. We aimed to describe clinicians’ decision-making regarding suitability of patient cases for LFS or BCC and level of equipoise to randomise participants in the RCTs.

Methods

Two online cross-sectional surveys distributed via UK and Australian professional networks to clinicians involved in LBP care, collected data on clinical discipline, practice setting and preferred care of five patient cases (ranging in age, pain duration, BMI, imaging findings, neurological signs/symptoms). Clinicians were also asked about willingness to randomise each patient case.