Early large treatment effects can arise in small studies, which lessen as more data accumulate. This study aimed to retrospectively examine whether early treatment effects occurred for two multicentre orthopaedic randomized controlled trials (RCTs) and explore biases related to this. Included RCTs were ProFHER (PROximal Fracture of the Humerus: Evaluation by Randomisation), a two-arm study of surgery versus non-surgical treatment for proximal humerus fractures, and UK FROST (United Kingdom Frozen Shoulder Trial), a three-arm study of two surgical and one non-surgical treatment for frozen shoulder. To determine whether early treatment effects were present, the primary outcome of Oxford Shoulder Score (OSS) was compared on forest plots for: the chief investigator’s (CI) site to the remaining sites, the first five sites opened to the other sites, and patients grouped in quintiles by randomization date. Potential for bias was assessed by comparing mean age and proportion of patients with indicators of poor outcome between included and excluded/non-consenting participants.Aims
Methods
The number of females within the speciality of trauma and orthopaedics (T&O) is increasing. The aim of this study was to identify: 1) current attitudes and behaviours of UK female T&O surgeons towards pregnancy; 2) any barriers faced towards pregnancy with a career in T&O surgery; and 3) areas for improvement. This is a cross-sectional study using an anonymous 13-section web-based survey distributed to female-identifying T&O trainees, speciality and associate specialist surgeons (SASs) and locally employed doctors (LEDs), fellows, and consultants in the UK. Demographic data was collected as well as closed and open questions with adaptive answering relating to attitudes towards childbearing and experiences of fertility and complications associated with pregnancy. A descriptive data analysis was carried out.Aims
Methods
Global literature suggests that female surgical trainees have lower rates of independent operating (operative autonomy) than their male counterparts. The objective of this study was to identify any association between gender and lead/independent operating in speciality orthopaedic trainees within the UK national training programme. This was a retrospective case-control study using electronic surgical logbook data from 2009 to 2021 for 274 UK orthopaedic trainees. Total operative numbers and level of supervision were compared between male and female trainees, with correction for less than full-time training (LTFT), prior experience, and time out during training (OOP). The primary outcome was the percentage of cases undertaken as lead surgeon (supervised and unsupervised) by UK orthopaedic trainees by gender.Aims
Methods
Deprivation underpins many societal and health inequalities. COVID-19 has exacerbated these disparities, with access to planned care falling greatest in the most deprived areas of the UK during 2020. This study aimed to identify the impact of deprivation on patients on growing waiting lists for planned care. Questionnaires were sent to orthopaedic waiting list patients at the start of the UK’s first COVID-19 lockdown to capture key quantitative and qualitative aspects of patients’ health. A total of 888 respondents were divided into quintiles, with sampling stratified based on the Index of Multiple Deprivation (IMD); level 1 represented the ‘most deprived’ cohort and level 5 the ‘least deprived’.Aims
Methods
Little guidance exists in the current literature regarding which patient recorded outcome measures (PROMs) are most clinically appropriate following anterior cruciate ligament reconstruction (ACL) surgery, and what results surgeons should expect or accept. Many PROMs have been validated, but their “ideal” results have not been published, limiting a surgeon's ability to compare their patients’ outcomes with those of their colleagues. We undertook a systematic review of PROMs for ACL to look at common usage and outcomes. After appropriate paper selection, we then undertook a pragmatic meta-analysis (i.e., including all papers that fulfilled the selection criteria, regardless of CONSORT status) and calculated weighted mean outcome scores and
Utility score is a preference-based measure of general health state – where 0 is equal to death, and 1 is equal to perfect health. To understand a patient's smallest perceptible change in utility score, the minimal clinically important difference (MCID) can be calculated. However, there are multiple methods to calculate MCID with no consensus about which method is most appropriate. The aim of this study is to calculate MCID values for the Veterans-RAND 12 (VR12) utility score using varying methods. Our hypothesis is that different methods will yield different MCID values. A tertiary institutional registry (SMART) was used as the study cohort. Patients who underwent unilateral TKA for osteoarthritis from January 2012 to January 2020 were included. Utility score was calculated from VR12 responses using the standardised Brazier's method. Distribution and anchor methods were used for the MCID calculation. For distribution methods, 0.5
Bone age is a radiographical assessment used in pediatric medicine due to its relative objectivity in determining biological maturity compared to chronological age and size.1 Currently, Greulich and Pyle (GP) is one of the most common methods used to determine bone age from hand radiographs.2–4 In recent years, new methods were developed to increase the efficiency in bone age analysis like the shorthand bone age (SBA) and the automated artificial intelligence algorithms. The purpose of this study is to evaluate the accuracy and reliability of these two methods and examine if the reduction in analysis time compromises their accuracy. Two hundred thirteen males and 213 females were selected. Each participant had their bone age determined by two separate raters using the GP (M1) and SBA methods (M2). Three weeks later, the two raters repeated the analysis of the radiographs. The raters timed themselves using an online stopwatch while analyzing the radiograph on a computer screen. De-identified radiographs were securely uploaded to an automated algorithm developed by a group of radiologists in Toronto. The gold standard was determined to be the radiology report attached to each radiograph, written by experienced radiologists using GP (M1). For intra-rater variability, intraclass correlation analysis between trial 1 (T1) and trial 2 (T2) for each rater and method was performed. For inter-rater variability, intraclass correlation was performed between rater 1 (R1) and rater 2 (R2) for each method and trial. Intraclass correlation between each method and the gold standard fell within the 0.8–0.9 range, highlighting significant agreement. Most of the comparisons showed a statistically significant difference between the two new methods and the gold standard; however it may not be clinically significant as it ranges between 0.25–0.5 years. A bone age is considered clinically abnormal if it falls outside 2
The functional pelvic tilt when standing and sitting forward of 7402 cases on the OPS, Optimized Ortho, Australia Data Base were reviewed. All patients had undergone lateral radiographs when standing simulating extension of the hip, and sitting forward when the hip is near full flexion. Pelvic tilt was measured as the angle of the Anterior Pelvic Plane to the vertical Sagittal Plane, rotation anteriorly being given a positive value. Pelvises that had rotated more than 13 degrees anteriorly (+ve) when sitting forward or posteriorly (-ve) when standing were considered to place the hip at increased risk of dislocation or edge loading when flexed or extending respectively. This degree of rotation has the effect of changing the acetabular version by approximately10. 0. Most safe zones that have been described have given a range of anteversion of 20. 0. as safe. A change of 10. 0. would potentially place the acetabular orientation outside this range. Further, clinical studies have supported this concept. All lateral radiographs were reviewed to confirm that 281 had undergone instrumented spinal fusion at some level between T12 and S1. There was a large variability in the number and the levels arthrodesed. The range of pelvic mobility in the non-arthrodesed group in extension was −37. 0. to 31. 0. (mean −0.9. 0. ,
Introduction. Recent technological advancements have led to the introduction of robotic-assisted total knee arthroplasty to improve the accuracy and precision of bony resections and implant position. However, the in vivo accuracy is not widely reported. The primary objective of this study is to determine the accuracy and precision of a cut block positioning robotic arm. Method. Seventy-seven patients underwent total knee arthroplasty with various workflows and alignment targets by three arthroplasty-trained surgeons with previous experience using the ROSA® Knee System. Accuracy and precision were determined by measuring the difference between various workflow time points, including the final pre-operative plan, validated resection angle, and post-operative radiographs. The mean difference between the measurements determined accuracy, and the
Functional outcomes are commonly reported in studies of musculoskeletal oncology patients undergoing limb salvage surgery; however, interpretation requires knowledge of the smallest amount of improvement that is important to patients – the minimally important difference (MID). We established the MIDs for the Musculoskeletal Tumor Society Rating Scale (MSTS) and Toronto Extremity Salvage Score (TESS) in patients with bone tumors undergoing lower limb salvage surgery. This study was a secondary analysis of the recently completed PARITY (Prophylactic Antibiotic Regimens in Tumor Surgery) study. This data was used to calculate: (1) the anchor-based MIDs using an overall function scale and a receiver operating curve analysis, and (2) the distribution-based MIDs based on one-half of the
INTRODUCTION. Determining proper joint tension in reverse total shoulder arthroplasty (rTSA) can be a challenging task for shoulder surgeons. Often, this is a subjective metric learned by feel during fellowship training with no real quantitative measures of what proper tension encompasses. Tension too high can potentially lead to scapular stress fractures and limitation of range of motion (ROM), whereas tension too low may lead to instability. New technologies that detect joint load intraoperatively create the opportunity to observe rTSA joint reaction forces in a clinical setting for the first time. The purpose of this study was to observe the differences in rTSA loads in cases that utilized two different humeral liner sizes. METHODS. Ten different surgeons performed a total of 37 rTSA cases with the same implant system. During the procedure, each surgeon reconstructed the rTSA implants to his or her own preferred tension. A wireless load sensing humeral liner trial (VERASENSE for Equinoxe, OrthoSensor, Dania Beach, FL) was used in lieu of a traditional plastic humeral liner trial to provide real-time load data to the operating surgeon during the procedure. Two humeral liner trial sizes were offered in 38mm and 42mm curvatures and were selected each case based on surgeon preference. To ensure consistent measurements between surgeons, a standardized ROM assessment consisting of four dynamic maneuvers (maximum internal to external rotation at 0°, 45°, and 90° of abduction, and a maximum flexion/extension maneuver) and three static maneuvers (arm overhead, across the body, and behind the back) was completed in each case. Deidentified load data in lbf was collected and sorted based on which size liner was selected. Differences in means for minimum and maximum load values for the four dynamic maneuvers and differences in means for the three static maneuvers were calculated using 2-tailed unpaired t-tests. RESULTS. No significant differences were observed for the flexion/extension maneuver between the 38mm and 42mm liner sizes, but a significant difference was observed for every internal/external rotation assessment at 0°, 45°, and 90° of abduction. No significant differences were observed for the across the body and overhead maneuvers, but a significant difference was observed for the behind the back maneuver (p = 0.015).
Restoration a joint's articular surface following degenerative or traumatic pathology to the osteochondral unit pose a significant challenge. Recent advances have shown the utility of collagen-based scaffolds in the regeneration of osteochondral tissue. To provide these collagen scaffolds with the appropriate superstructure novel techniques in 3D printing have been investigated. This study investigates the use of polyɛ-caprolactone (PCL) collagen scaffolds in a porcine cadaveric model to establish the stability of the biomaterial once implanted. This study was performed in a porcine cadaveric knee model. 8mm defects were created in the medial femoral trochlea and repaired with a PCL collagen scaffold. Scaffolds were secured by one of three designs; Press Fit (PF), Press Fit with Rings (PFR), Press Fit with Fibrin Glue (PFFG). Mobilisation was simulated by mounting the pig legs on a continuous passive motion (CPM) machine for either 50 or 500 cycles. Biomechanical tensile testing was performed to examine the force required to displace the scaffold. 18 legs were used (6 PF, 6 PFR, 6 PFFG). Fixation remained intact in 17 of the cohort (94%). None of the PF or PFFG scaffolds displaced after CPM cycling. Mean peak forces required to displace the scaffold were highest in the PFFG group (3.173 Newtons,
Abstract. Background. Aim of this study is to determine the difference between re-operation rates after conventional Methods of fixation of patella fractures using Metallic implants and novel technique of all suture fixation using Ethibond or fiber tape. Methods. This is a retrospective comparative analysis involving 62 patients who had a transverse patellar fracture and underwent surgery between January 2013 to December 2021. Selected patients were divided, based on different fixation methods used, into four groups - TBW group, CC screw group, Encirclage group and Suture Fixation Group. Patients were followed till bone union was evident on radiographs. Number of patients in Metallic implant group undergoing repeat operation were compared with the patients who underwent patella fracture fixation using all suture technique. Mean and
Introduction. Achieving high flexion after total knee arthroplasty is very important for patients in Asian countries where deep flexion activities are an important part of daily life. The Bi-Surface Total Knee System (Japan Medical Material, Kyoto, Japan), which has a unique ball-and-socket mechanism in the mid-posterior portion of the femoral and tibial components, was designed to improve deep knee flexion and long-term durability after total knee arthroplasty (Figure 1). The purpose of this study was to determine the in vivo three dimensional kinematics of Bi-Surface Total Knee System in order to evaluate and analyze the performance of this system with other conventional TKA designs currently available in the market today. Materials and Methods. Three dimensional kinematics were evaluated during a weight-bearing deep knee bend activity using fluoroscopy and a 2D-to-3D registration technique for 66 TKA. Each knee was analyzed to determine femorotibial kinematics, including weight-bearing range of motion, anterior/posterior contact position, and tibio-femoral rotation. Results. The average weight-bearing range of motion for the entire group was 125.5∗∗∗∗∗. Forty three of sixty six knees had greater range of motion than 120∗∗∗∗∗. At full extension, the average contact positions were −0.5mm (range, from −12.2mm to 6.8mm;
Background. Artificial total knee designs have revolutionized over time, yet 20% of the population still report dissatisfaction. The standard implants fail to replicate native knee kinematic functionality due to mismatch of condylar surfaces and non-anatomically placed implantation. (Daggett et al 2016; Saigo et al 2017). It is essential that the implant surface matches the native knee to prevent Instability and soft tissue impingement. Our goal is to use computational modeling to determine the ideal shapes and orientations of anatomically-shaped components and test the accuracy of fit of component surfaces. Methods. One hundred MRI scans of knees with early osteoarthritis were obtained from the NIH Osteoarthritis Initiative, converted into 3D meshes, and aligned via an anatomic coordinate system algorithm. Geomagic Design X software was used to determine the average anterior-posterior (AP) length. Each knee was then scaled in three dimensions to match the average AP length. Geomagic's least-squares algorithm was used to create an average surface model. This method was validated by generating a statistical shaped model using principal component analysis (PCA) to compare to the least square's method. The averaged knee surface was used to design component system sizing schemes of 1, 3, 5, and 7 (fig 1). A further fifty arthritic knees were modeled to test the accuracy of fit for all component sizing schemes.
Introduction. Removal of primary components during revision TKA procedure can damage underlying bone, resulting in defects that may need filled for stability of the revision reconstruction. Special revision components including cones and/or augments are often used to compensate for the missing bones. Little work has been done to characterize metaphyseal geometry in the vicinity of the knee joint, however, in order to motivate proper size and shape of cones and augments. The objective of this study was to use statistical shape modelling to evaluate variation in endosteal anatomy for revision TKA. Methods. Digital models of the femur and tibia were generated through segmentation of computed tomography scans, for the femur and the tibia (n∼500). Custom software was used to perform virtual surgery and statistical shape analysis of the metaphyseal geometry. A representative and appropriately sized revision femoral component was placed on each bone, assuming anterior referencing with an external rotation of 3 degrees from the posterior condyle axis. The outer and inner boundaries of the cortical bone were determined at the resection level and at 5 mm increments proximally, up to 40 mm. Similar analyses were performed on the tibia, using a typical revision resection (0 degrees medial and posterior slope), with outer and inner boundaries of the cortical bone were determined in 5 mm increments up to 40mm distal to the resection. Metaphyseal contours were exported relative to the central fixation feature of the implant, and average geometries were calculated based on size, and across the entire cohort. Principal Component Analysis (PCA) was used to quantify the variability in shape, specifically to evaluate the +/− 1 and 2
The widely used Fracture Risk Assessment Tool (FRAX) estimates a 10-year probability of major osteoporotic fracture (MOF) using age, sex, body mass index, and seven clinical risk factors, including prior history of fracture. Prior fracture is a binary variable in FRAX, although it is now clear that prior fractures affect future MOF risk differently depending on their recency and site. Risk of MOF is highest in the first two years following a fracture and then progressively decreases with time – this is defined as imminent risk. Therefore, the FRAX tool may underestimate true fracture risk and result in missed opportunities for earlier osteoporosis management in individuals with recent MOF. To address this, multipliers based on age, sex, and fracture type may be applied to baseline FRAX scores for patients with recent fractures, producing a more accurate prediction of both short- and long-term fracture risk. Adjusted FRAX estimates may enable earlier pharmacologic treatment and other risk reduction strategies. This study aimed to report the effect of multipliers on conventional FRAX scores in a clinical cohort of patients with recent non-hip fragility fractures. After obtaining Research Ethics Board approval, FRAX scores were calculated both before and after multiplier adjustment, for patients included in our outpatient Fracture Liaison Service who had experienced a non-hip fragility fracture between June 2020 and November 2021. Patients age 50 years or older, with recent (within 3 months) forearm (radius and/or ulna) or humerus fractures were included. Exclusion criteria consisted of patients under the age of 50 years or those with a hip fracture. Age- and sex-based FRAX multipliers for recent forearm and humerus fractures described by McCloskey et al. (2021) were used to adjust the conventional FRAX score. Low, intermediate and high-risk of MOF was defined as less than 10%, 10-20%, and greater than 20%, respectively. Data are reported as mean and
Statistical shape modeling (SSM) and statistical density modeling (SDM) are tools capable of describing the main modes of deviation in the shape and density distribution of the shoulder using a set of uncorrelated variables called principal components (PCs). We hypothesize that the first PC of the SDM, which scales overall density up/down, will be inversely correlated with age and will, on average, be greater for males than females. We also hypothesize that there is a correlation between some PCs of shape and density. SSM and SDM were developed for scapulae and humeri by segmenting surface meshes from computed tomographic images of 75 cadaveric shoulders. Bones were co-registered and defined by the same surface mesh. Volumetric tetrahedral meshes were defined for one of the specimens serving as base meshes for SDM. Base meshes were morphed to each individual bone's surface and superimposed upon the corresponding CT data to determine image intensity in Hounsfield units at each node. Principal component analysis was performed on the exterior shape and internal density distribution of bones. T-tests were performed to find any differences in PC scores between males and females, and Pearson correlation coefficients were calculated for age and PC scores. Finally, correlation coefficients between each of the PCs of the shape and density models were calculated. For the humerus, the first three PCs of the SDM were significantly correlated with age (ρ = 0.40, −0.46, and 0.36, all p ≤ 0.007). For the scapula, the first and ninth PCs showed such correlation (ρ = −0.31, and −0.32, all p ≤ 0.02). Statistically significant differences due to sex were found for the second to sixth SDM PCs of the humerus, with differences in average PC scores of 1, 1, −0.7, −0.8, and −0.6
Introduction. External fixators are attached to bones with percutaneous pins and wires inserted through soft tissues and bone increasing the risk of infections. Such infections compromise patient outcomes e.g., through pin loosening or loss, failure of fixator to stabilise the fracture, additional surgery, increased pain, and delayed mobilisation. These infections also impact the healthcare system for example, increased OPD visits, hospitalisations, treatments, surgeries and costs. Nurses have a responsibility in the care and management of patients with external fixators and ultimately in the prevention of pin-site infection. Yet, evidence on best practices in the prevention of pin-site infection is limited and variation in pin-site management practices is evident. Various strategies are used for the prevention of pin-site infection including the use of different types of non-medicated and medicated wound dressings. The aim of this retrospective study was to investigate the use of dry gauze or iodine tulle dressings for the prevention of pin-site infections in patients with lower limb external fixators. Methodology. A retrospective study of patients with lower limb external fixators who attended the research site between 2015–2022. Setting & Sample: The setting was the outpatient's (OPD) orthopaedic clinic in a University Teaching Hospital in Dublin, Ireland. Eligibility Criteria:. Over the age of 16, treated with an Ilizarov, Taylor Spatial frame (TSF) or Limb Reconstruction System (LRS) external fixators on lower limbs,. Pin-sites dressed with dry gauze or iodine tulle,. Those with pre-existing infected wounds close to the pin site and/or were on long term antibiotics were excluded. Follow Up Period: From time of external fixator application to first pin-site infection or removal of external fixator. Outcome Assessment: The primary outcome was pin-site infection, secondary outcomes included but were not limited to frequency of pin-site infection according to types of bone fixation, frequency of pin/wire removal and hospitalisation due to infection. Data analysis: IBM SPSS Version 25 was used for statistical analysis. Descriptive and inferential statistics were conducted as appropriate. Categorical data were analysed by counting the frequencies (number and percentages) of participants with an event as opposed to counting the number of episodes for each event. Differences between groups were analysed using Chi-square test or Fisher's exact test, where appropriate. Continuous variables were reported using mean and
Introduction. With many stakeholders, healthcare decisions are complex. However, patient interests should be prioritized. This maximizes healthcare value (quality divided by cost), simultaneously minimizing costs (objective) and maximizing quality (subjective). Unfortunately, even ‘high value’ procedures like total knee arthroplasty (TKA) suffer from recovery assessment subjectivity (i.e. high assessment variability) and increasing costs. High TKA costs and utilization yield high annual expenditures (∼$22B), including postoperative physical therapy (PT) accounting for ∼10% of total costs (∼$2.3B annually). Post-TKA PT is typically homogenous across subjects ensuring most recover, however recent work shows outcomes unimpacted by PT. Accordingly, opportunities exist improving healthcare value by simultaneously reducing unnecessary PT expenditures and improving outcomes. However, discerning recovery completion relies on discrete ROM measures captured clinically and subjective clinician experience (i.e. intuition about recovery). Accordingly, our goal was developing objective post-TKA performance assessment methods utilizing gait knee ROM and statistical analyses to categorize patient recovery (‘accelerated,’ ‘delayed,’ or ‘normal’). Methods. We first established statistical reasons for current post-TKA rehabilitation including risk-reward tradeoffs between incorrectly ascribing ‘poor recovery’ to well-recovering patients (T1 error) or ‘good recovery’ to poorly-recovering patients (T2 error) using methods described by Mudge et al. and known TKA volumes/rehabilitation costs. Next, previously captured gait ROM data from well-healed patients was utilized establishing standard recovery curves. These were then utilized to assess newly captured patient recovery. Following IRB approval, we prospectively captured gait ROM from 10 TKA patients (3M, 69±13 years) 1-week pre-TKA and 6-weeks immediately post-TKA. Performance was compared to recovery curves via control charts/Shewhart rules (daily performance) as well as