Advertisement for orthosearch.org.uk
Results 1 - 20 of 1081
Results per page:
Bone & Joint Open
Vol. 1, Issue 10 | Pages 628 - 638
6 Oct 2020
Mott A Mitchell A McDaid C Harden M Grupping R Dean A Byrne A Doherty L Sharma H

Aims. Bone demonstrates good healing capacity, with a variety of strategies being utilized to enhance this healing. One potential strategy that has been suggested is the use of stem cells to accelerate healing. Methods. The following databases were searched: MEDLINE, CENTRAL, EMBASE, Cochrane Database of Systematic Reviews, WHO-ICTRP, ClinicalTrials.gov, as well as reference checking of included studies. The inclusion criteria for the study were: population (any adults who have sustained a fracture, not including those with pre-existing bone defects); intervention (use of stem cells from any source in the fracture site by any mechanism); and control (fracture healing without the use of stem cells). Studies without a comparator were also included. The outcome was any reported outcomes. The study design was randomized controlled trials, non-randomized or observational studies, and case series. Results. In all, 94 eligible studies were identified. The clinical and methodological aspects of the studies were too heterogeneous for a meta-analysis to be undertaken. A narrative synthesis examined study characteristics, stem cell methods (source, aspiration, concentration, and application) and outcomes. Conclusion. Insufficient high-quality evidence is available to determine the efficacy of stem cells for fracture healing. The studies were heterogeneous in population, methods, and outcomes. Work to address these issues and establish standards for future research should be undertaken. Cite this article: Bone Joint Open 2020;1-10:628–638


Bone & Joint Research
Vol. 10, Issue 10 | Pages 650 - 658
1 Oct 2021
Sanghani-Kerai A Black C Cheng SO Collins L Schneider N Blunn G Watson F Fitzpatrick N

Aims. This study investigates the effects of intra-articular injection of adipose-derived mesenchymal stem cells (AdMSCs) and platelet-rich plasma (PRP) on lameness, pain, and quality of life in osteoarthritic canine patients. Methods. With informed owner consent, adipose tissue collected from adult dogs diagnosed with degenerative joint disease was enzymatically digested and cultured to passage 1. A small portion of cells (n = 4) surplus to clinical need were characterized using flow cytometry and tri-lineage differentiation. The impact and degree of osteoarthritis (OA) was assessed using the Liverpool Osteoarthritis in Dogs (LOAD) score, Modified Canine Osteoarthritis Staging Tool (mCOAST), kinetic gait analysis, and diagnostic imaging. Overall, 28 joints (25 dogs) were injected with autologous AdMSCs and PRP. The patients were followed up at two, four, eight, 12, and 24 weeks. Data were analyzed using two related-samples Wilcoxon signed-rank or Mann-Whitney U tests with statistical significance set at p < 0.05. Results. AdMSCs demonstrated stem cell-like characteristics. LOAD scores were significantly lower at week 4 compared with preinjection (p = 0.021). The mCOAST improved significantly after three months (p = 0.001) and six months (p = 0.001). Asymmmetry indices decreased from four weeks post-injection and remained significantly lower at six months (p = 0.025). Conclusion. These improvements in quality of life, reduction in pain on examination, and improved symmetry in dogs injected with AdMSCs and PRP support the effectiveness of this combined treatment for symptom modification in canine OA for six months. Cite this article: Bone Joint Res 2021;10(10):650–658


Bone & Joint Research
Vol. 9, Issue 10 | Pages 719 - 728
1 Oct 2020
Wang J Zhou L Zhang Y Huang L Shi Q

Aims. The purpose of our study was to determine whether mesenchymal stem cells (MSCs) are an effective and safe therapeutic agent for the treatment of knee osteoarthritis (OA), owing to their cartilage regeneration potential. Methods. We searched PubMed, Embase, and the Cochrane Library, with keywords including “knee osteoarthritis” and “mesenchymal stem cells”, up to June 2019. We selected randomized controlled trials (RCTs) that explored the use of MSCs to treat knee OA. The visual analogue scale (VAS), Western Ontario and McMaster University Osteoarthritis Index (WOMAC), adverse events, and the whole-organ MRI score (WORMS) were used as the primary evaluation tools in the studies. Our meta-analysis included a subgroup analysis of cell dose and cell source. Results. Seven trials evaluating 256 patients were included in the meta-analysis. MSC treatment significantly improved the VAS (mean difference (MD), –13.24; 95% confidence intervals (CIs) –23.28 to –3.20, p = 0.010) and WOMAC (MD, –7.22; 95% CI –12.97 to –1.47, p = 0.010). The low-dose group with less than 30 million cells showed lower p-values for both the VAS and WOMAC. Adipose and umbilical cord–derived stem cells also had lower p-values for pain scores than those derived from bone marrow. Conclusion. Overall, MSC-based cell therapy is a relatively safe treatment that holds great potential for OA, evidenced by a positive effect on pain and knee function. Using low-dose (25 million) and adipose-derived stem cells is likely to achieve better results, but further research is needed. Cite this article: Bone Joint Res 2020;9(10):719–728


Bone & Joint Research
Vol. 13, Issue 12 | Pages 779 - 789
16 Dec 2024
Zou H Hu F Wu X Xu B Shang G An D Qin D Zhang X Yang A

Aims. The involvement of long non-coding RNA (lncRNA) in bone marrow mesenchymal stem cell (MSC) osteogenic differentiation during osteoporosis (OP) development has attracted much attention. In this study, we aimed to disclose how LINC01089 functions in human mesenchymal stem cell (hMSC) osteogenic differentiation, and to study the mechanism by which LINC01089 regulates MSC osteogenesis. Methods. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) and western blotting were performed to analyze LINC01089, miR-1287-5p, and heat shock protein family A (HSP70) member 4 (HSPA4) expression. The osteogenic differentiation of MSCs was assessed through alkaline phosphatase (ALP) activity, alizarin red S (ARS) staining, and by measuring the levels of osteogenic gene marker expressions using commercial kits and RT-qPCR analysis. Cell proliferative capacity was evaluated via the Cell Counting Kit-8 (CCK-8) assay. The binding of miR-1287-5p with LINC01089 and HSPA4 was verified by performing dual-luciferase reporter and RNA immunoprecipitation (RIP) experiments. Results. LINC01089 expression was reinforced in serum samples of OP patients, but it gradually diminished while hMSCs underwent osteogenic differentiation. LINC01089 knockdown facilitated hMSC osteogenic differentiation. This was substantiated by: the increase in ALP activity; ALP, runt-related transcription factor 2 (RUNX2), osteocalcin (OCN), and osteopontin (OPN) messenger RNA (mRNA) levels; and level of ARS staining. Meanwhile, LINC01089 upregulation resulted in the opposite effects. LINC01089 targeted miR-1287-5p, and the LINC01089 knockdown-induced hMSC osteogenic differentiation was repressed by miR-1287-5p depletion. HSPA4 is a downstream function molecule of the LINC01089/miR-1287-5p pathway; miR-1287-5p negatively modulated HSPA4 levels and attenuated its functional effects. Conclusion. LINC01089 negatively regulated hMSC osteogenic differentiation, at least in part, via governing miR-1287-5p/HSPA4 signalling. These findings provide new insights into hMSC osteogenesis and bone metabolism. Cite this article: Bone Joint Res 2024;13(12):779–789


Bone & Joint Research
Vol. 10, Issue 1 | Pages 10 - 21
1 Jan 2021
Zong Z Zhang X Yang Z Yuan W Huang J Lin W Chen T Yu J Chen J Cui L Li G Wei B Lin S

Aims. Ageing-related incompetence becomes a major hurdle for the clinical translation of adult stem cells in the treatment of osteoarthritis (OA). This study aims to investigate the effect of stepwise preconditioning on cellular behaviours in human mesenchymal stem cells (hMSCs) from ageing patients, and to verify their therapeutic effect in an OA animal model. Methods. Mesenchymal stem cells (MSCs) were isolated from ageing patients and preconditioned with chondrogenic differentiation medium, followed by normal growth medium. Cellular assays including Bromodeoxyuridine / 5-bromo-2'-deoxyuridine (BrdU), quantitative polymerase chain reaction (q-PCR), β-Gal, Rosette forming, and histological staining were compared in the manipulated human mesenchymal stem cells (hM-MSCs) and their controls. The anterior cruciate ligament transection (ACLT) rabbit models were locally injected with two millions, four millions, or eight millions of hM-MSCs or phosphate-buffered saline (PBS). Osteoarthritis Research Society International (OARSI) scoring was performed to measure the pathological changes in the affected joints after staining. Micro-CT analysis was conducted to determine the microstructural changes in subchondral bone. Results. Stepwise preconditioning approach significantly enhanced the proliferation and chondrogenic potential of ageing hMSCs at early passage. Interestingly, remarkably lower immunogenicity and senescence was also found in hM-MSCs. Data from animal studies showed cartilage damage was retarded and subchondral bone remodelling was prevented by the treatment of preconditioned MSCs. The therapeutic effect depended on the number of cells applied to animals, with the best effect observed when treated with eight millions of hM-MSCs. Conclusion. This study demonstrated a reliable and feasible stepwise preconditioning strategy to improve the safety and efficacy of ageing MSCs for the prevention of OA development. Cite this article: Bone Joint Res 2021;10(1):10–21


Bone & Joint Research
Vol. 13, Issue 9 | Pages 462 - 473
6 Sep 2024
Murayama M Chow SK Lee ML Young B Ergul YS Shinohara I Susuki Y Toya M Gao Q Goodman SB

Bone regeneration and repair are crucial to ambulation and quality of life. Factors such as poor general health, serious medical comorbidities, chronic inflammation, and ageing can lead to delayed healing and nonunion of fractures, and persistent bone defects. Bioengineering strategies to heal bone often involve grafting of autologous bone marrow aspirate concentrate (BMAC) or mesenchymal stem cells (MSCs) with biocompatible scaffolds. While BMAC shows promise, variability in its efficacy exists due to discrepancies in MSC concentration and robustness, and immune cell composition. Understanding the mechanisms by which macrophages and lymphocytes – the main cellular components in BMAC – interact with MSCs could suggest novel strategies to enhance bone healing. Macrophages are polarized into pro-inflammatory (M1) or anti-inflammatory (M2) phenotypes, and influence cell metabolism and tissue regeneration via the secretion of cytokines and other factors. T cells, especially helper T1 (Th1) and Th17, promote inflammation and osteoclastogenesis, whereas Th2 and regulatory T (Treg) cells have anti-inflammatory pro-reconstructive effects, thereby supporting osteogenesis. Crosstalk among macrophages, T cells, and MSCs affects the bone microenvironment and regulates the local immune response. Manipulating the proportion and interactions of these cells presents an opportunity to alter the local regenerative capacity of bone, which potentially could enhance clinical outcomes. Cite this article: Bone Joint Res 2024;13(9):462–473


Bone & Joint Research
Vol. 13, Issue 12 | Pages 764 - 778
12 Dec 2024
Huang Q Zhuo Y Duan Z Long Y Wang J Zhang Z Fan S Huang Y Deng K Xin H

Aims. Mesenchymal stem cells (MSCs) are usually cultured in a normoxic atmosphere (21%) in vitro, while the oxygen concentrations in human tissues and organs are 1% to 10% when the cells are transplanted in vivo. However, the impact of hypoxia on MSCs has not been deeply studied, especially its translational application. Methods. In the present study, we investigated the characterizations of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) in hypoxic (1%) and normoxic (21%) atmospheres with a long-term culture from primary to 30 generations, respectively. The comparison between both atmospheres systematically analyzed the biological functions of MSCs, mainly including stemness maintenance, immune regulation, and resistance to chondrocyte apoptosis, and studied their joint function and anti-inflammatory effects in osteoarthritis (OA) rats constructed by collagenase II. Results. We observed that long-term hypoxic culture surpassed normoxic atmosphere during hUC-MSCs culture in respect of promoting proliferation, anti-tumorigenicity, maintaining normal karyotype and stemness, inhibiting senescence, and improving immunoregulatory function and the role of anti-apoptosis in chondrocytes. Furthermore, we demonstrated that the transplantation of long-term hypoxic hUC-MSCs (Hy-MSCs) had a better therapeutic effect on OA rats compared with the hUC-MSCs cultured in the normoxic atmosphere (No-MSCs) in terms of the improved function and swelling recovery in the joints, and substantially inhibited the secretion of pro-inflammatory factors, which effectively alleviated cartilage damage by reducing the expression of matrix metallopeptidase 13 (MMP-13). Conclusion. Our results demonstrate that Hy-MSCs possess immense potential for clinical applications via promoting stemness maintenance and enhancing immunoregulatory function. Cite this article: Bone Joint Res 2024;13(12):763–777


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 94 - 94
2 Jan 2024
Graça A Domingues R Docheva D Gomez-Florit M Gomes M
Full Access

Worldwide, tendon disorders are one of the main causes of disability that decrease the quality of life of individuals and represent a substantial economic burden on society. Currently, the main therapies used for tendon injuries are not able to restore tendon functionality, and due to tendons' hypovascular and hypocellular nature, they present a reduced healing capacity, which also limits the success of the available therapies. In order to discover new therapies, extracellular vesicles (EVs), key players in cell-cell communication, have been widely explored for tissue engineering and regenerative medicine applications. Thus, the aim of this study is to assess the role of EVs derived from platelets in stem cell tenogenic commitment using a bioengineered tendon in vitro model for potential use as tendon therapeutic agents. Biomimetic platelet-derived EVs were produced by freeze-thaw cycles of platelets and isolation at different centrifugation speed. To recreate the architecture of tendons, a 3D system consisting of electrospun anisotropic nanofiber scaffolds coated with collagen encapsulating human adipose stem cells (hASCs) and different types of platelet-derived EVs, were produced. Then, the influence of the tendon-mimetic constructs and the distinct EVs populations in the hASCs tenogenic differentiation were assessed over culture time. We observed that the hASCs on the nanofibrous tendon scaffolds, show high cytoskeleton anisotropic organization that is characteristic of tenocytes. Moreover, acting as biological cues, platelet-derived EVs boosted hASCs tenogenic commitment, supported by the increased gene expression of tendon-related markers (SCX and TNMD). Additionally, EVs enhanced the deposition of tendon like extracellular matrix (ECM), as evidenced by the increased gene expression of ECM-related markers such as COL1, COL3, DCN, TNC, and MMP-3, which are fundamental for ECM synthesis and degradation balance. Moreover, EVs induced lower collagen matrix contraction on hASCs, which has been related with lower myofibroblast differentiation. Overall, the results revealed that EVs are capable of modulating stem cells' behavior boosting their tenogenic commitment, through the increased expression of healthy tendon cell markers, potentiating ECM deposition and decreasing cell contractility. Therefore, platelet EVs are a promising biochemical tool, worthy to be further explored, as paracrine signaling that might potentiate tendon repair and regeneration


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_13 | Pages 41 - 41
7 Aug 2023
Al-Jabri T Bentley G McCulloch R Miles J Carrington R Shearman A Donaldson J Jayadev C
Full Access

Abstract. Background. Autologous chondrocyte implantation is a NICE approved intervention however it involves the morbidity of two operations, a prolonged rehabilitation and substantial healthcare costs. This study describes a novel, one-step, bone marrow (BM) derived mesenchymal stem cell (MSC) transplantation technique for treating knee osteochondral lesions and presents our prospective clinical study investigating the success of this technique in 206 lesions over a 5 year period. Methodology. The surgical technique involves harvesting BM from patients’ anterior superior iliac spines, centrifugation to isolate MSCs and seeding into a type 1 collagen scaffold (SyngenitTM Biomatrix). Autologous fibrin glue is used to secure the scaffold into the defect. Inclusion criteria included patients aged 15 – 55 years old with symptomatic osteochondral lesions >1cm2. Exclusion criteria included patients with ligament instability, uncorrected alignment, inflammatory arthropathy and a Body Mass Index >35 kg/m2. Outcome measures included the Modified Cincinnati Knee Rating System (MCKRS), complications and reoperations. Results. Mean MCKR scores showed statistically significant improvements compared to pre-operative scores at 6 months 58.79 ± 3.5 and 1 year postoperatively 63.82 ± 3.93 with further improvements at 2 years and 5 years which did not reach statistical significance. Survival rates were 97.9%, 94% and 93.2% at 1, 2 and 5 years. Multiple regression analysis identified previous cartilage surgery, microfracture and age as factors affecting MCKRS scores (p < 0.029, 0.001 and 0.030, respectively). Conclusions. One-step BM derived stem cell transplantation demonstrates satisfactory outcomes over a 5 year period


Bone & Joint Research
Vol. 3, Issue 2 | Pages 32 - 37
1 Feb 2014
Singh A Goel SC Gupta KK Kumar M Arun GR Patil H Kumaraswamy V Jha S

Introduction. Osteoarthritis (OA) is a progressively debilitating disease that affects mostly cartilage, with associated changes in the bone. The increasing incidence of OA and an ageing population, coupled with insufficient therapeutic choices, has led to focus on the potential of stem cells as a novel strategy for cartilage repair. Methods. In this study, we used scaffold-free mesenchymal stem cells (MSCs) obtained from bone marrow in an experimental animal model of OA by direct intra-articular injection. MSCs were isolated from 2.8 kg white New Zealand rabbits. There were ten in the study group and ten in the control group. OA was induced by unilateral transection of the anterior cruciate ligament of the knee joint. At 12 weeks post-operatively, a single dose of 1 million cells suspended in 1 ml of medium was delivered to the injured knee by direct intra-articular injection. The control group received 1 ml of medium without cells. The knees were examined at 16 and 20 weeks following surgery. Repair was investigated radiologically, grossly and histologically using haematoxylin and eosin, Safranin-O and toluidine blue staining. Results. Radiological assessment confirmed development of OA changes after 12 weeks. Rabbits receiving MSCs showed a lower degree of cartilage degeneration, osteophyte formation, and subchondral sclerosis than the control group at 20 weeks post-operatively. The quality of cartilage was significantly better in the cell-treated group compared with the control group after 20 weeks. Conclusions. Bone marrow-derived MSCs could be promising cell sources for the treatment of OA. Neither stem cell culture nor scaffolds are absolutely necessary for a favourable outcome. Cite this article: Bone Joint Res 2014;3:32–7


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 46 - 46
14 Nov 2024
Teixeira SPB Pardo A Taboada P Wolleb M Snedeker J Reis RL Gomes MME Domingues RMA
Full Access

Introduction. PIEZO mechanoreceptors are increasingly recognized to play critical roles in fundamental physiological processes like proprioception, touch, or tendon biomechanics. However, their gating mechanisms and downstream signaling are still not completely understood, mainly due to the lack of effective tools to probe these processes. Here, we developed new tailor-made nanoswitches enabling wireless targeted actuation on PIEZO1 by combining molecular imprinting concepts with magnetic systems. Method. Two epitopes from functionally relevant domains of PIEZO1 were rationally selected in silico and used as templates for synthesizing molecularly imprinted nanoparticles (MINPs). Highly-responsive superparamagnetic zinc-doped iron oxide nanoparticles were incorporated into MINPs to grant them magnetic responsiveness. Endothelial cells (ECs) and adipose tissue-derived stem cells (ASCs) incubated with each type of MINP were cultured under or without the application of cyclical magnetomechanical stimulation. Downstream effects of PIEZO1 actuation on cell mechanotransduction signaling and stem cell fate were screened by analyzing gene expression profiles. Result. Nanoswitches showed sub-nanomolar affinity for their respective epitope, binding PIEZO1-expressing ECs similarly to antibodies. Expression of genes downstream of PIEZO1 activity significantly changed after magnetomechanical stimulation, demonstrating that nanoswitches can transduce this stimulus directly to PIEZO1 mechanoreceptors. Moreover, this wireless actuation system proved effective for modulating the expression of genes related to musculoskeletal differentiation pathways in ASCs, with RNA-sequencing showing pronounced shifts in extracellular matrix organization, signal transduction, or collagen biosynthesis and modification. Importantly, targeting each epitope led to different signaling effects, implying distinct roles for each domain in the sophisticated function of these channels. Conclusion. This innovative wireless actuation technology provides a promising approach for dissecting PIEZO-mediated mechanobiology and suggests potential therapeutic applications targeting PIEZO1 in regenerative medicine for mechanosensitive tissues like tendon. Acknowledgements. EU's Horizon 2020 ERC under grant No. 772817 and Horizon Europe under grant No. 101069302; FCT/MCTES for PD/BD/143039/2018, COVID/BD/153025/2022, 10.54499/2020.03410.CEECIND/CP1600/CT0013, 10.54499/2022.05526.PTDC, 10.54499/UIDB/50026/2020, 10.54499/UIDP/50026/2020, and 10.54499/LA/P/0050/2020


Bone & Joint Research
Vol. 6, Issue 2 | Pages 98 - 107
1 Feb 2017
Kazemi D Shams Asenjan K Dehdilani N Parsa H

Objectives. Mesenchymal stem cells have the ability to differentiate into various cell types, and thus have emerged as promising alternatives to chondrocytes in cell-based cartilage repair methods. The aim of this experimental study was to investigate the effect of bone marrow derived mesenchymal stem cells combined with platelet rich fibrin on osteochondral defect repair and articular cartilage regeneration in a canine model. Methods. Osteochondral defects were created on the medial femoral condyles of 12 adult male mixed breed dogs. They were either treated with stem cells seeded on platelet rich fibrin or left empty. Macroscopic and histological evaluation of the repair tissue was conducted after four, 16 and 24 weeks using the International Cartilage Repair Society macroscopic and the O’Driscoll histological grading systems. Results were reported as mean and standard deviation (. sd. ) and compared at different time points between the two groups using the Mann-Whitney U test, with a value < 0.05 considered statistically significant. Results. Higher cumulative macroscopic and histological scores were observed in stem cell treated defects throughout the study period with significant differences noted at four and 24 weeks (9.25, . sd. 0.5 vs 7.25, . sd. 0.95, and 10, . sd. 0.81 vs 7.5, . sd. 0.57; p < 0.05) and 16 weeks (16.5, . sd. 4.04 vs 11, . sd. 1.15; p < 0.05), respectively. Superior gross and histological characteristics were also observed in stem cell treated defects. Conclusion. The use of autologous culture expanded bone marrow derived mesenchymal stem cells on platelet rich fibrin is a novel method for articular cartilage regeneration. It is postulated that platelet rich fibrin creates a suitable environment for proliferation and differentiation of stem cells by releasing endogenous growth factors resulting in creation of a hyaline-like reparative tissue. Cite this article: D. Kazemi, K. Shams Asenjan, N. Dehdilani, H. Parsa. Canine articular cartilage regeneration using mesenchymal stem cells seeded on platelet rich fibrin: Macroscopic and histological assessments. Bone Joint Res 2017;6:98–107. DOI: 10.1302/2046-3758.62.BJR-2016-0188.R1


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 13 - 13
2 Jan 2024
Teixeira S Pardo A Bakht S Gomez-Florit M Reis R Gomes M Domingues R
Full Access

Tendon diseases are prevalent health concerns for which current therapies present limited success, in part due to the intrinsically low regenerative ability of tendons. Therefore, tissue engineering presents a potential to improve this outcome. Here, we hypothesize that a concurrent control over both biophysical and biochemical stimuli will boost the tenogenic commitment of stem cells, thus promoting regeneration. To achieve this, we combine molecularly imprinted nanoparticles (MINPs), which act as artificial amplifiers for endogenous growth factor (GF) activity, with bioinspired anisotropic hydrogels. 2. to manufacture 3D tenogenic constructs. MINPs were solid phase-imprinted using a TGF-β3 epitope as template and their affinity for the target was assessed by SPR and dot blot. Magnetically-responsive microfibers were produced by cryosectioning electrospun meshes containing iron oxide nanoparticles. The constructs were prepared by encapsulating adipose tissue-derived stem cells (ASCs), microfibers, and MINPs within gelatin hydrogels, while aligning the microfibers with an external magnetostatic field during gelation. This allows an effective modulation of hydrogel fibrillar topography, mimicking the native tissue's anisotropic architecture. Cell responses were analyzed by multiplex immunoassay, quantitative polymerase chain reaction, and immunocytochemistry. MINPs showed an affinity for the template comparable to monoclonal antibodies. Encapsulated ASCs acquired an elongated shape and predominant orientation along the alignment direction. Cellular studies revealed that combining MINPs with aligned microfibers increased TGF-β signaling via non-canonical Akt/ERK pathways and upregulated tendon-associated gene expression, contrasting with randomly oriented gels. Immunostaining of tendon-related proteins presented analogous outcomes, corroborating our hypothesis. Our results thus demonstrate that microstructural cues and biological signals synergistically direct stem cell fate commitment, suggesting that this strategy holds potential for improving tendon healing and might be adaptable for other biological tissues. The proposed concept highlights the GF-sequestering ability of MINPs which allows a cost-effective alternative to recombinant GF supplementation, potentially decreasing the translational costs of tissue engineering strategies. Acknowledgements: The authors acknowledge the funding from the European Union's Horizon 2020 under grant No. 772817; from FCT/MCTES for scholarships PD/BD/143039/2018 & COVID/BD/153025/2022 (S.P.B.T.), and PD/BD/129403/2017 (S.M.B.), co-financed by POCH and NORTE 2020, under the Portugal 2020 partnership agreement through the European Social Fund, for contract 2020.03410.CEECIND (R.M.A.D.) and project 2022.05526.PTDC; and from Xunta de Galicia for grant ED481B2019/025 (A.P.)


Bone & Joint 360
Vol. 2, Issue 1 | Pages 2 - 5
1 Feb 2013
Khan M Roberts S Richardson JB McCaskie A

Stem cells are a key component of regenerative medicine strategies. Particular areas of musculoskeletal application include cartilage and bone regeneration in arthritis and trauma. There are several types of stem cell and this article will focus on the adult derived cells. The review includes current issues and future developments


Bone & Joint Research
Vol. 6, Issue 6 | Pages 358 - 365
1 Jun 2017
Sanghani-Kerai A Coathup M Samazideh S Kalia P Silvio LD Idowu B Blunn G

Objectives. Cellular movement and relocalisation are important for many physiologic properties. Local mesenchymal stem cells (MSCs) from injured tissues and circulating MSCs aid in fracture healing. Cytokines and chemokines such as Stromal cell-derived factor 1(SDF-1) and its receptor chemokine receptor type 4 (CXCR4) play important roles in maintaining mobilisation, trafficking and homing of stem cells from bone marrow to the site of injury. We investigated the differences in migration of MSCs from the femurs of young, adult and ovariectomised (OVX) rats and the effect of CXCR4 over-expression on their migration. Methods. MSCs from young, adult and OVX rats were put in a Boyden chamber to establish their migration towards SDF-1. This was compared with MSCs transfected with CXCR4, as well as MSCs differentiated to osteoblasts. Results. MSCs from OVX rats migrate significantly (p < 0.05) less towards SDF-1 (9%, . sd. 5%) compared with MSCs from adult (15%, . sd. 3%) and young rats (25%, . sd. 4%). Cells transfected with CXCR4 migrated significantly more towards SDF-1 compared with non-transfected cells, irrespective of whether these cells were from OVX (26.5%, . sd. 4%), young (47%, . sd. 17%) or adult (21%, . sd. 4%) rats. Transfected MSCs differentiated to osteoblasts express CXCR4 but do not migrate towards SDF-1. Conclusions. MSC migration is impaired by age and osteoporosis in rats, and this may be associated with a significant reduction in bone formation in osteoporotic patients. The migration of stem cells can be ameliorated by upregulating CXCR4 levels which could possibly enhance fracture healing in osteoporotic patients. Cite this article: A. Sanghani-Kerai, M. Coathup, S. Samazideh, P. Kalia, L. Di Silvio, B. Idowu, G. Blunn. Osteoporosis and ageing affects the migration of stem cells and this is ameliorated by transfection with CXCR4. Bone Joint Res 2017;6:–365. DOI: 10.1302/2046-3758.66.BJR-2016-0259.R1


Bone & Joint Research
Vol. 8, Issue 7 | Pages 333 - 341
1 Jul 2019
Grossner TL Haberkorn U Gotterbarm T

Objectives. Bone tissue engineering is one of the fastest growing branches in modern bioscience. New methods are being developed to achieve higher grades of mineral deposition by osteogenically inducted mesenchymal stem cells. In addition to well established monolayer cell culture models, 3D cell cultures for stem cell-based osteogenic differentiation have become increasingly attractive to promote in vivo bone formation. One of the main problems of scaffold-based osteogenic cell cultures is the difficulty in quantifying the amount of newly produced extracellular mineral deposition, as a marker for new bone formation, without destroying the scaffold. In recent studies, we were able to show that . 99m. Tc-methylene diphosphonate (. 99m. Tc-MDP), a gamma radiation-emitting radionuclide, can successfully be applied as a reliable quantitative marker for mineral deposition as this tracer binds with high affinity to newly produced hydroxyapatite (HA). Methods. Within the present study, we evaluated whether this promising new method, using . 99m. Tc-hydroxydiphosphonate (. 99m. Tc-HDP), can be used to quantify the amount of newly formed extracellular HA in a 3D cell culture model. Highly porous collagen type II scaffolds were seeded with 1 × 106 human mesenchymal stem cells (hMSCs; n = 6) and cultured for 21 days in osteogenic media (group A – osteogenic (OSM) group) and in parallel in standard media (group B – negative control (CNTRL) group). After incubation with . 99m. Tc-HDP, the tracer uptake, reflected by the amount of emitted gamma counts, was measured. Results. We saw a higher uptake (up to 15-fold) of the tracer in the OSM group A compared with the CNTRL group B. Statistical analysis of the results (Student`s t-test) revealed a significantly higher amount of emitted gamma counts in the OSM group (p = 0.048). Qualitative and semi-quantitative analysis by Alizarin Red staining confirmed the presence of extracellular HA deposition in the OSM group. Conclusion. Our data indicate that . 99m. Tc-HDP labelling is a promising tool to track and quantify non-destructive local HA deposition in 3D stem cell cultures. Cite this article: T. L. Grossner, U. Haberkorn, T. Gotterbarm. . 99m. Tc-Hydroxydiphosphonate quantification of extracellular matrix mineralization in 3D human mesenchymal stem cell cultures. Bone Joint Res 2019;8:333–341. doi: 10.1302/2046-3758.87.BJR-2017-0248.R1


Bone & Joint Research
Vol. 8, Issue 9 | Pages 414 - 424
2 Sep 2019
Schmalzl J Plumhoff P Gilbert F Gohlke F Konrads C Brunner U Jakob F Ebert R Steinert AF

Objectives. The long head of the biceps (LHB) is often resected in shoulder surgery and could therefore serve as a cell source for tissue engineering approaches in the shoulder. However, whether it represents a suitable cell source for regenerative approaches, both in the inflamed and non-inflamed states, remains unclear. In the present study, inflamed and native human LHBs were comparatively characterized for features of regeneration. Methods. In total, 22 resected LHB tendons were classified into inflamed samples (n = 11) and non-inflamed samples (n = 11). Proliferation potential and specific marker gene expression of primary LHB-derived cell cultures were analyzed. Multipotentiality, including osteogenic, adipogenic, chondrogenic, and tenogenic differentiation potential of both groups were compared under respective lineage-specific culture conditions. Results. Inflammation does not seem to affect the proliferation rate of the isolated tendon-derived stem cells (TDSCs) and the tenogenic marker gene expression. Cells from both groups showed an equivalent osteogenic, adipogenic, chondrogenic and tenogenic differentiation potential in histology and real-time polymerase chain reaction (RT-PCR) analysis. Conclusion. These results suggest that the LHB tendon might be a suitable cell source for regenerative approaches, both in inflamed and non-inflamed states. The LHB with and without tendinitis has been characterized as a novel source of TDSCs, which might facilitate treatment of degeneration and induction of regeneration in shoulder surgery. Cite this article: J. Schmalzl, P. Plumhoff, F. Gilbert, F. Gohlke, C. Konrads, U. Brunner, F. Jakob, R. Ebert, A. F. Steinert. Tendon-derived stem cells from the long head of the biceps tendon: Inflammation does not affect the regenerative potential. Bone Joint Res 2019;8:414–424. DOI: 10.1302/2046-3758.89.BJR-2018-0214.R2


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 18 - 18
17 Apr 2023
Isa I Fauzi M Yusoff N Sapri S Sahruddin N Damanhuri M Mokhtar S
Full Access

The extracellular matrix (ECM)-based biomaterials provide a platform to mimic the disc microenvironment in facilitating stem cell transplantation for tissue regeneration. However, little is known about in vitro preconditioning human umbilical cord Wharton Jelly-derived mesenchymal stem cells (MSCs) on 3D hyaluronic acid (HA)/type II collagen (COLII) hydrogel for nucleus pulposus (NP) phenotype and pain modulation. We developed a tuneable 3D HA/COLII by fabricating HA/COLII hydrogel at 2 mg/ml COLII and various weight ratios of HA:COLII, 1:9 and 4.5:9. The hydrogel was characterized for degradability, stability, and swelling capacity. The viability of hWJ-MSC encapsulated on hydrogel supplemented with TGF-β3 was assessed. The implantation of HA/COLII hydrogel was done in surgically induced disc injury model of pain in the rat tail. The general health status in rats was monitored. The nociceptive behaviour in rats was performed for mechanical allodynia using von Frey test. The HA/COLII 4.5:9 hydrogel showed higher swelling capacity than weight ratio 1:9, suggesting that a higher amount of HA can absorb a large amount of water. Both HA/COLII 4.5:9 and 1:9 hydrogel formulations had a similar degradation profile, stable to the hydrolytic process. The hWJ-MSC-encapsulated on hydrogel marked higher cell viability with round morphology shape of cells in vitro. The surgically induced disc injury in the rat tail evoked mechanical allodynia, without affecting general health status in rats. The implantation of HA/COLII 1:9 hydrogel was observed to slightly alleviate injury-induced mechanical allodynia. Fine-tuning HA/COLII-based hydrogel provides the optimal swelling capacity, stability, degradability, and non-cytotoxic, mimicking the 3D NP niche in guiding hWJ-MSCs towards NP phenotype. The HA/COLII hydrogel could be employed as an advanced cell delivery system in facilitating stem cell transplantation for intervertebral disc regeneration targeting pain


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 12 - 12
2 Jan 2024
Montes A Mauro A Cerveró-Varona A Prencipe G El Khatib M Tosi U Wouters G Stöckl J Russo V Barboni B
Full Access

Adipose-derived stem cells (ADSCs) are an effective alternative for Teno-regeneration. Despite their applications in tendon engineering, the mechanisms promoting tendon healing still need to be understood. Since there is scattered information on ovine ADSCs, this research aims to investigate in vitro their teno-differentiation for potential use in preclinical tendon regeneration models. Ovine ADSCs were isolated from the tail region according to FAT-STEM laboratories, expanded until passage six (P6), and characterized in terms of stemness, adhesion and MHC markers by Flow Cytometry (FCM) and immunocytochemistry (ICC). Cell proliferation and senescence were evaluated with MTT and Beta-galactosidase assays, respectively. P1 ADSCs’ teno-differentiation was assessed by culturing them with teno-inductive Conditioned Media (CM) or engineering them on tendon-mimetic PLGA scaffolds. ADSCs teno-differentiation was evaluated by morphological, molecular (qRT-PCR), and biochemical (WesternBlot) approaches. ADSCs exhibited mesenchymal phenotype, positive for stemness (SOX2, NANOG, OCT4), adhesion (CD29, CD44, CD90, CD166) and MHC-I markers, while negative for hematopoietic (CD31, CD45) and MHC-II markers, showing no difference between passages. ICC staining confirmed these results, where ADSCs showed nuclear positivity for SOX2 (≅ 56%) and NANOG (≅ 67%), with high proliferation capacity without senescence until P6. Interestingly, ADSCs cultured with the teno-inductive CM did not express tenomodulin (TNMD) protein or gene. Conversely, ADSCs seeded on scaffolds teno-differentiated, acquiring a spindle shape supported by TNMD protein expression at 48h (p<0.05 vs. ADSCs 48h) with a significant increase at 14 days of culture (p<0.05 vs. ADSCs + fleece 48h). Ovine ADSCs respond differently upon distinct teno-inductive strategies. While the molecules on the CM could not trigger a teno-differentiation in the cells, the scaffold's topological stimulus did, resulting in the best strategy to apply. More insights are requested to better understand ovine ADSCs’ tenogenic commitment before using them in vivo for tendon regeneration. Acknowledgements: This research is part of the P4FIT project ESR5, under the H2020MSCA-ITN-EJD-P4 FIT-Grant Agreement ID:955685


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 120 - 120
1 Nov 2018
Korntner S Gaspar D Zeugolis D
Full Access

Phenotypic drift of stem cells and insufficient production of extracellular matrix (ECM) are frequently observed in tissue-engineered cartilage substitutes, posing major weaknesses of clinically relevant therapies targeting cartilage repair. Microenvironment plays an important role for stem cell maintenance and differentiation and therefore an optimal chondrogenic differentiation protocol is highly desirable. Macromolecular crowding (MMC) is a biophysical phenomenon that accelerates biological processes by several orders of magnitude. MMC was recently shown to significantly increase ECM deposition and to promote chondrogenic differentiation of stem cells. We hypothesise that the addition of sulphated high-molecular weight polysaccharides (carrageenan) to the media positively affects stem cell maintenance and chondrogenic differentiation. Herein, we venture to assess the impact of MMC on the maintenance of stem cell phenotype and multipotency, and ECM deposition in xeno-free human bone marrow mesenchymal stem cell (BMSCs) cultures. We investigate different xeno- and serum-free stem cell media with MMC for expansion of BMSCs, assessing multipotency maintenance (FACS analysis), cell viability, metabolic activity, proliferative capacity and matrix deposition (SDS-PAGE, ICC) at day 4 and day 10. Experiments will be conducted at 2 different passages (p3, p7). Medium without MMC will be used as control. Based on these results, cells expanded with the best protocol will be subsequently investigated for chondrogenic differentiation comparing different xeno-/serum-free and serum containing differentiation media. Chondrogenic differentiation will be assessed via Alcian blue and Safranin O stainings, gene expression for chondrogenic marker genes and quantification of GAG content. Finally, these findings will pave the way for developing more effective strategies for cartilage tissue engineering