Advertisement for orthosearch.org.uk
Results 1 - 20 of 25
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 24 - 24
1 Jan 2017
Bola M Ramos A Simões J
Full Access

Total shoulder arthroplasty is a well-tested procedure that offers pain relief and restores the joint function. However, failure rate is still high, and glenoid loosening is pointed as the main reason in orthopedic registers. In order to understand the principles of failure, the principal strain distributions after implantation with Comprehensive® Total Shoulder System of Biomet® were experimental and numerically studied to predict bone behavior. Fourth generation composite left humerus and scapula from Sawbones® were used. These were implanted with Comprehensive® Total Shoulder System (Biomet®) with a modular Hybrid® glenoid base and Regenerex® glenoid and placed in situ by an experienced surgeon. The structures were placed in order to simulate 90º abduction, including principal muscular actions. Muscle forces used were as follows: Deltoideus 300N, Infraspinatus 120N, Supraspinatus 90N, Subscapularis 225N. All bone structures were modeled considering cortical and the trabecular bone of the scapula. The components of prosthesis were placed in the same positions than those in the in vitro models. Geometries were meshed with tetrahedral linear elements, with material properties as follows: Elastic modulus of cortical bone equal to 16 GPa, elastic modulus of trabecular bone equal to 0.155 GPa, polyethylene equal to 1GPa and titanium equal to 110 GPa. The assumed Poisson's ratio was 0.3 in all except for polyethylene where we assumed a value of 0.4. The prosthesis was considered as glued to the adjacent bone. The finite element model was composed of 336 024 elements. At the glenoid cavity, the major influence of the strain distributions was observed at the posterior-superior region, in both cortical and trabecular bone structures. The system presents critical region around holes of fixation in glenoid component. At the trabecular bone, the maximum principal strains at the posterior-superior region ranged from 2250 µε to 3000 µε. While at the cortical bone, the maximum principal strains were 300 µε to 400 µε. The results observed evidence some critical regions of concern and the effect of implant in the bone strains mainly at the posterior-superior region of the glenoid cavity is pronounced. This indicates that this region is more affected by the implant if bone remodeling is a concern and it is due to the strain-shielding effect, which has been connected with loosening of the glenoid component


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 178 - 178
1 Jul 2014
Zheng K Scholes C Lynch J Parker D Li Q
Full Access

Summary Statement. An MRI-derived subject-specific finite element model of a knee joint was loaded with subject-specific kinetic data to investigate stress and strain distribution in knee cartilage during the stance phase of gait in-vivo. Introduction. Finite element analysis (FEA) has been widely used to predict the local stress and strain distribution at the tibiofemoral joint to study the effects of ligament injury, meniscus injury and cartilage defects on soft tissue loading under different loading conditions. Previous studies have focused on static FEA of the tibiofemoral joint, with few attempts to conduct subject-specific FEA on the knee during physical activity. In one FEA study utilising subject-specific loading during gait, the knee was simplified by using linear springs to represent ligaments. To address the gap that no studies have performed subject-specific FEA at the tibiofemoral joint with detailed structures, the present study aims to develop a highly detailed subject-specific FE model of knee joint to precisely simulate the stress distribution at knee cartilage during the stance phase of the gait cycle. Method. A detailed three-dimensional model of a healthy human knee was developed from MRI images of a living subject, including the main anatomical structures (bones, all principal ligaments, menisci and articular cartilages). The femur, tibia and fibula were considered as rigid bodies, while the menisci and articular cartilage were modelled as linearly elastic, isotropic and homogeneous while the ligaments were considered to be hyperelastic. Loading and boundary condition assignment was based on the kinematic and kinetic data recorded during gait analysis. Ten time intervals during the stance phase of gait were separately simulated to quantify the time–dependent stress distribution throughout the cycle from heel-strike to toe-off. Loading condition of the tibiofemoral joint varys during the gait cycle since the joint angle changes from extension to flextion, therefore different joint angles at relative time interval were determined to accurately simulate the varing loading condition. Results. The compressive stress and tensile strain distributions in the femoral cartilage, tibia cartilage and menisci of each selected time interval during the stance phase of gait cycle were quantified and corresponded to specific amount of varus/valgus knee moment obtained by inverse dynamics analysis of the kinematic and kinetic data from gait analysis. Therefore a correlation between stress/strain and the frontal movement was established and analysed. For example, at 10% of stance phase, the stress concentration was observed on the lateral compartment due to the valgus moment created at heel strike. At the next interval, the stress concentration shifted to the medial side as the frontal knee moment shifted to a varus orientation. Discussion. The results suggest that the stress distribution of tibiofemoral articular cartilage is qualitatively consistent with the valgus and varus moment observed during the stance phase of gait. The methods described could be applied to investigate the effects of injury and reconstruction on stress distribution within the tibiofemoral joint


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 2 | Pages 295 - 301
1 Mar 2001
Kim Y Kim J Cho S

Six pairs of human cadaver femora were divided equally into two groups one of which received a non-cemented reference implant and the other a very short non-dependent experimental implant. Thirteen strain-gauge rosettes were attached to the external surface of each specimen and, during application of combined axial and torsional loads to the femoral head, the strains in both groups were measured.

After the insertion of a non-cemented femoral component, the normal pattern of a progressive proximal-to-distal increase in strains was similar to that in the intact femur and the strain was maximum near the tip of the prosthesis. On the medial and lateral aspects of the proximal femur, the strains were greatly reduced after implantation of both types of implant. The pattern and magnitude of the strains, however, were closer to those in the intact femur after insertion of the experimental stem than in the reference stem. On the anterior and posterior aspects of the femur, implantation of both types of stem led to increased principal strains E1, E2 and E3. This was most pronounced for the experimental stem.

Our findings suggest that the experimental stem, which has a more anatomical proximal fit without having a distal stem and cortex contact, can provide immediate postoperative stability. Pure proximal loading by the experimental stem in the metaphysis, reduction of excessive bending stiffness of the stem by tapering and the absence of contact between the stem and the distal cortex may reduce stress shielding, bone resorption and thigh pain.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 5 | Pages 676 - 682
1 May 2009
Østbyhaug PO Klaksvik J Romundstad P Aamodt A

Hydroxyapatite-coated standard anatomical and customised femoral stems are designed to transmit load to the metaphyseal part of the proximal femur in order to avoid stress shielding and to reduce resorption of bone. In a randomised in vitro study, we compared the changes in the pattern of cortical strain after the insertion of hydroxyapatite-coated standard anatomical and customised stems in 12 pairs of human cadaver femora. A hip simulator reproduced the physiological loads on the proximal femur in single-leg stance and stair-climbing. The cortical strains were measured before and after the insertion of the stems.

Significantly higher strain shielding was seen in Gruen zones 7, 6, 5, 3 and 2 after the insertion of the anatomical stem compared with the customised stem. For the anatomical stem, the hoop strains on the femur also indicated that the load was transferred to the cortical bone at the lower metaphyseal or upper diaphyseal part of the proximal femur.

The customised stem induced a strain pattern more similar to that of the intact femur than the standard, anatomical stem.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 8 | Pages 1176 - 1181
1 Aug 2010
Tayton E Evans S O’Doherty D

We implanted titanium and carbon fibre-reinforced plastic (CFRP) femoral prostheses of the same dimensions into five prosthetic femora. An abductor jig was attached and a 1 kN load applied. This was repeated with five control femora. Digital image correlation was used to give a detailed two-dimensional strain map of the medial cortex of the proximal femur. Both implants caused stress shielding around the calcar. Distally, the titanium implant showed stress shielding, whereas the CFRP prosthesis did not produce a strain pattern which was statistically different from the controls. There was a reduction in strain beyond the tip of both the implants.

This investigation indicates that use of the CFRP stem should avoid stress shielding in total hip replacement.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 113 - 113
1 Dec 2020
Kempfert M Schwarze M Angrisani N Welke B Willbold E Reifenrath J
Full Access

Chronic rotator cuff tears are a major problem especially in the elderly population. Refixation is associated with high re-rupture rates. Therefore new implants or healing methods are needed. For a control of success biomechanical characteristics of native as well as treated tendons are of particular importance. Currently, tensile tests with static material testing machines are the most common technique for the biomechanical characterization of tendons. Resulting values are the maximum force (Fmax), stiffness and the Young´s modulus. However, no information is given about the allocation of strains over the tendon area. In addition, the determination of Fmax results in tissue destruction thus foreclosing further evaluation like histology. The Digital Image Correlation (DIC) is a contact-free non-destructive optical measuring method which gives information about distribution of strains by tracking the areal shift of an applied speckle pattern. The needed speckle pattern has to have a high contrast, a homogeneous distribution and a good adhesion to the surface. The method is established for the characterization of construction materials [1] to detect e.g. weak points. The present study examined if DIC is applicable for the complementary biomechanical evaluation of the sheep infraspinatus tendon. Fine ground powder extracted from a printer cartridge was chosen as a starting point. Preliminary to the in vitro experiments, the powder was applied on sheets with different methods: brushing, blowing, sieving and stamping. Stamping showed best results and was used for further in vitro tests on cadaveric native tendons (n=5). First, the toner powder was transferred to coarse-grained abrasive paper using a brush and stamped on the tendon surface. Afterwards DIC analysis was performed. For the in vivo tests, the left infraspinatus tendon of two German black-headed Mutton Sheep was detached and then refixed with bone anchors, the right tendon was used as native control (authorization: AZ 33.19-42502-04-17/2739). 12 weeks after surgery the animals were euthanized, the shoulders were explanted and DIC measurement performed. The speckle pattern could be applied adequately on the smooth tendon surfaces of native tendons. All specimens could be analyzed by DIC with sufficient correlation coefficients. The highest displacements were measured in the peripheral areas, whereas the central part of the tendon showed a low displacement. Repaired left tendons showed obvious differences already macroscopically. The tendons were thicker and showed inhomogeneous surfaces. Application of the toner powder by stamping was distinctly more complicated, DIC analysis could not produce sufficient correlation coefficients. In summary, transfer of DIC to native infraspinatus tendons of sheep was successful and can be further transferred to other animal and human tendons. However, irregular surfaces in tendon scar tissues affect the application of an adequate speckle pattern with a stamp technique. Therefore, further modifications are necessary. This research project has been supported by the German Research Foundation “Graded Implants FOR 2180 – tendon- and bone junctions” WE 4262/6-1


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 75 - 75
1 Nov 2021
Ramos A Matos M
Full Access

Introduction and Objective. The patients with a total hip arthroplasty is growing in world manly in Europe and USA, and this solution present a high success at 10years in several orthopaedic registers. The application of total press-fit hip fixation presents the most used solution, but presents some failures associated to the acetabular component fixation, associated to the load transfer and bone loss at long term. The aim of this work is to investigate the influence of different acetabular bone loss in the strain distribution in iliac bone. To evaluate implant fixation, an experimental study was performed using acetabular press-fit component simulating different acetabular bone loss and measuring the strain distribution. Materials and Methods. The experimental samples developed was based in an iliac bone model of Sawbones supplier and a acetabular component Titanium (Stryker) in a condition press-fit fixation and was implanted according surgical procedure with 45º inclination angle and 20º in the anteversion angle. Were developed five models with same initial bone, one with intact condition simulating the cartilage between bones and four with different bone loss around the acetabular component. These four models representing the evolution of bone support of acetabular components presented in the literature. The evolution of bone loss was imposed with a CAD CAM process in same iliac bone model. The models were instrumented with 5 rosettes in critical region at the cortical bone to measure the strain evolution along the process. Results. The results of strain gauges present the influence of acetabular component implantation, reducing the bone strains and presented the effect of the strain shielding. The acetabular component works as a shield in the load transfer. The critical region is the posterior region with highest principal strains and the strain effect was observed with different bone loss around acetabular component. The maximum value of principal strain was observed in the intact condition in the anterior region, with 950μ∊. In the posterior superior region, the effect of bone loss is more important presenting a reduction of 500% in the strains. The effect of bone loss is presented in the strains induced with acetabular implantation, in the first step of implantation the maximum strain was 950μ∊ and in the last model the value was 50μ∊, indicating lower press-fit fixation. Conclusions. The models developed allows study the effect of bone loss and acetabular implant fixation in the load transfer at the hip articulation. The results presented a critical region as the anterior-superior and the effect of strain shielding was observed in comparison with intact articulation. The results of press-fit fixation present a reduction of implant stability along bone loss. The process of bone fixation developed present some limitation associated to the bone adhesion in the interface, not considered. Acknowledgement. This work was supported by POCI-01-0145-FEDER-032486,– FCT, by the FEDER, with COMPETE2020 - (POCI), FCT/M


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 63 - 63
1 Mar 2021
Halcrow B Wilcox R Brockett C
Full Access

Abstract. Introduction. Ankle arthritis is estimated to affect approximately 72 million people worldwide. Treatment options include fusion and total ankle replacement (TAR). Clinical performance of TAR is not as successful as other joint replacement and failure is poorly understood. Finite element analysis offers a method to assess the strain in bone implanted with a TAR. Higher strain has been associated with microfracture and alters the bone-implant interface. The aim of this study was to explore the influence of implant fixation on strain within the tibia when implanted with a TAR through subject-specific models. Methods. Five cadaveric ankles were scanned using a Scanco Xtreme CT. The Tibia and Talus were segmented from each scan and virtually implanted with a Zenith TAR (Corin, UK) according to published surgical technique. Patient specific models were created and run at five different positions of the gait cycle corresponding to peak load and flexion values identified from literature. Bone material properties were derived from CT greyscale values and all parts were meshed with linear tetrahedral elements. The implant-bone interface was adjusted to fully-fixed or frictionless contact, representing different levels of fixation post-surgery. Strain distributions around the tibial bone fixation were measured. Results. Initial results showed clear differences in strain distributions both between different ankle specimens and fixation levels, with highest strain occurring within the bone at the tip of the tibial stem. Frictionless contact gave higher strain outputs than fully-fixed for all specimens with a range 0.12–0.3% and 0.07%–0.13% respectively. Conclusions. In all specimens, strain was higher in the frictionless contact, which may be considered representative of no bony ingrowth, highlighting fixation may be a critical factor in TAR failure. Differences observed between specimens highlights that TAR may not be a suitable intervention for all patients, due to variation in bone quality and anatomy. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 147 - 147
4 Apr 2023
Tohidnezhad M Kubo Y Gonzalez J Weiler M Pahlavani H Szymanski K Mirazaali M Pufe T Jahr H
Full Access

Nuclear factor erythroid 2–related factor 2 (Nrf2) is a crucial transcription factor to maintain cellular redox homeostasis, but is also affecting bone metabolism. As the association between Nrf2 and osteoporosis in elderly females is not fully elucidated, our aim was to shed light on the potential contribution of Nrf2 to the development of age-dependent osteoporosis using a mouse model. Female wild-type (WT, n=18) and Nrf2-knockout (KO, n=12) mice were sacrificed at different ages (12 weeks=young mature adult, and 90 weeks=old), morphological cortical and trabecular properties of femoral bone analyzed by micro-computed tomography (µCT), and compared to histochemistry. Mechanical properties were derived from quasi-static compression tests and digital image correlation (DIC) used to analyze full-field strain distribution. Bone resorbing cells and aromatase expression by osteocytes were evaluated immunohistochemically and empty osteocyte lacunae counted in cortical bone. Wilcoxon rank sum test was used for data comparison and differences considered statistically significant at p<0.05. When compared to old WT mice, old Nrf2-KO mice revealed a significantly reduced trabecular bone mineral density (BMD), cortical thickness (Ct.Th), cortical area (Ct.Ar), and cortical bone fraction (Ct.Ar/Tt.Ar). Surprisingly, these parameters were not different in skeletally mature young adult mice. Metaphyseal trabeculae were thin but present in all old WT mice, while no trabecular bone was detectable in 60% of old KO mice. Occurrence of empty osteocyte lacunae did not differ between both groups, but a significantly higher number of osteoclast-like cells and fewer aromatase-positive osteocytes were found in old KO mice. Furthermore, female Nrf2-KO mice showed an age-dependently reduced fracture resilience when compared to age-matched WT mice. Our results confirmed lower bone quantity and quality as well as an increased number of bone resorbing cells in old female Nrf2-KO mice. Additionally, aromatase expression in osteocytes of old Nrf2-KO mice was compromised, which may indicate a chronic lack of estrogen in bones of old Nrf2-deficient mice. Thus, chronic Nrf2 loss seems to contribute to age-dependent progression of female osteoporosis


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 20 - 20
1 Apr 2017
Meijer M Boerboom A Stevens M Reininga I Janssen D Verdonschot N
Full Access

Background. Trabecular metal (TM) cones are designed to fill up major bone defects in total knee arthroplasty. Tibial components can be implanted in combination with a stem, but it is unclear if this is necessary after reconstruction with a TM cone. Implanting a stem may give extra stability, but may also have negative side-effects. Aim of this study was to investigate stability and strain distribution of a tibial plateau reconstruction with a TM cone while the tibal component is implanted with and without a stem, and whether prosthetic stability was influenced by bone mineral density (BMD). Methods. Tibial revision arthroplasties were performed after reconstruction of an AORI 2B bone defect with TM cones. Plateaus were implanted in seven pairs of cadaveric tibiae; of each pair, one was implanted with and the other without stem. All specimens were loaded to one bodyweight alternating between the medial and lateral tibia plateau. Implant-bone micro motions, bone strains, BMD and correlations were measured and/or calculated. Results. Tibial components without a stem showed only more varus tilt (difference in median 0.14 degrees (P<0.05), but this was not considered clinically relevant. Strain distribution did not differ. BMD had only an effect on the anterior/posterior tilt ρ:-0.72 (P<0.01). Conclusions. Tibial components, with or without a stem, which are implanted after reconstruction of major bone defects using TM cones produce very similar biomechanical conditions in terms of stability and strain distribution. Additional stem extension of the tibial component may not be required after reconstruction of major bone defects using TM cones. Level of evidence. IIb. Disclosures. The department of Orthopaedics, University of Groningen, University Medical Center Groningen has received direct funding from the Anna Fonds (Oegstgeest, NL). Zimmer (Warsaw, IN, USA) has provided the instrumentation and tools for this study. The department of Orthopaedics, University of Groningen, University Medical Center Groningen receives research institutional support from InSpine (Schiedam, NL) and Stryker (Kalamazoo, Mich. USA). One of the authors (ALB) will be and has been paid as a consultant by Zimmer (Warsaw, IN, USA) for purposes of education and training in knee arthroplasty


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 107 - 107
1 Jan 2017
Danesi V Tozzi G Soffiatti R Cristofolini L
Full Access

Prophylactic augmentation is meant to reinforce the vertebral body (VB), but in some cases it is suspected to actually weaken it. To elucidate the biomechanical efficacy of prophylactic augmentation, the full-field three-dimensional strain distributions were measured for the first time inside prophylactic-augmented vertebrae. Twelve thoracic porcine vertebrae were assigned to three groups: 4 were augmented with bone cement for vertebroplasty (Mendec-Spine, Tecres), 4 were treated with another bone cement for vertebroplasty (Calcemex-Spine, Tecres) while the other 4 were tested untreated as a control. Destructive tests were carried out under axial compression, in a step-wise fashion (unloaded, 5%, 10% and 15% compression). At each loading step, μCT-images were acquired. The internal strain distribution was investigated by means of DVC analysis. Some augmented specimens were stronger than the respective control, while others were weaker. In most of the specimens, the strain distribution in the elastic regime (5% compression) seemed to predict the location of the micro-damage initiation before it actually became identifiable (at 10% and 15% compression). The measured strain had the same order of magnitude for all groups. However, in the control vertebrae, the highest strain would unpredictably appear at any location inside the VB. Conversely, for both augmentation groups, the highest strains were measured in the regions adjacent to the injected cement mass, whereas the cement-interdigitated-bone was less strained. Localization of high strains and failure was consistent between specimens, but different between the two cement types: with Mendec-Spine failure the highest strains were mainly localized at mid-height and at the same level where the cement mass was localized; with Calcemex-Spine failure the highest strains were mainly cranial and caudal to the cement mass. Both the micro-CT images, and the DVC strain analysis highlighted that:. The cement mass was less strained than any other regions in the vertebra. Failure never started inside the cement mass. This can be explained with the additional stiffening and reinforcement associated with the infiltration of the cement inside the trabecular bone. The highest strains and failure were localized in the bone adjacent to the cement-bone interdigitated region. This can be explained by the strain concentration between the cement-interdigitated bone (stiffer and stronger), and the adjacent non-augmented trabecular bone. The strain maps in the elastic regime and the localization of failure was different in the augmented vertebrae, when compared to the natural controls. This suggests an alteration of the load sharing in the augmented structure where the load is mostly carried by the cement region. The different localization of failure initiation between the two augmented groups could be explained by the different mechanical properties of the two cements. This study has demonstrated the potential of DVC in measuring the internal strain and failure in prophylactic-augmented vertebrae. It has been shown that failure starts inside the augmented VB, next to the injected cement mass. This can help establishing better criteria (in terms of localization of the cement mass) in order to improve clinical protocols for vertebroplasty surgical procedures


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 40 - 40
1 Dec 2021
Cheong VS Roberts B Kadirkamanathan V Dall'Ara E
Full Access

Abstract. Objectives. Current therapies for osteoporosis are limited to generalised antiresorptive or anabolic interventions, which do not target specific regions to improve skeletal health. Moreover, the adaptive changes of separate and combined pharmacological and biomechanical treatments in the ovariectomised (OVX) mouse tibia has not been studied yet. Therefore, this study combines micro- computed tomography (micro-CT) imaging and computational modelling to evaluate the efficacies of treatments in reducing bone loss. Methodology. In vivo micro-CT (10.4µm/voxel) images of the right tibiae of N=18 female OVX C57BL/6 mice were acquired at weeks 14, 16, 18, 20 and 22 of age for 3 groups: mechanical loading (ML), parathyroid hormone (PTH) or combined therapies (PTHML). All mice received either injection of PTH (100μg/kg/day, 5days/week) or vehicle from week 18. The right tibiae were mechanically loaded in vivo at week 19 and 21 with a 12N peak load, 40 cycles/day and 3 days/week. Bone adaptation was quantified through spatial changes in bone mineral density (BMD) and strain distribution was obtained from micro-CT-based finite element models. Results. Densitometric parameters improved for all treatment between week 18–20 (10–21%), with the strongest benefits due to loading in the proximal regions (16–35%). At week 22, PTHML treatment induced 23–76% higher bone apposition in the proximal tibia than either monotherapy. Compared to the OVX control, all treatments reduced periosteal resorption at weeks 18–20 and 20–22 (20–87%). However, resorption in weeks 20–22 were 29–55% higher than weeks 18–20, increasing the strain in the proximal tibia. Synergistic effects of PTH and ML were observed on the periosteal surface of proximal tibia, but additive effects were seen predominately on the distal and lateral tibia. Conclusions. ML had a more dominant effect in improving bone health. PTH enhances bone's osteogenic response to ML additively and synergistically in a site- and time-dependent manner


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 44 - 44
1 Mar 2021
Clark J Tavana S Jeffers J Hansen U
Full Access

Abstract. OBJECTIVES. An unresolved challenge in osteoarthritis research is characterising the localised intra-tissue mechanical response of articular cartilage. The aim of this study was to explore whether laboratory micro-computed tomography (micro-CT) and digital volume correlation (DVC) permit non-destructive visualisation of three-dimensional (3D) strain fields in human articular cartilage. METHODS. Human articular cartilage specimens were harvested from the knee (n=4 specimens from 2 doners), mounted into a loading device and imaged in the loaded and unloaded state using a micro-CT scanner. Strain was calculated throughout the volume of the cartilage using the CT image data. RESULTS. Strain was calculated in the 3D volume with a spatial resolution of 75 µm, and the volumetric DVC calculated strain was within 5% of the known applied stain. Variation in strain distribution between the superficial, middle and deep zones was observed, consistent with the different architecture of the material in these locations. CONCLUSIONS. The DVC method is suitable for calculating strain in human articular cartilage. This method will be useful to generate chondral repair scaffolds that that seek to replicate the strain gradient in cartilage. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 34 - 34
1 Mar 2021
Cheong VS Roberts B Kadirkamanathan V Dall’Ara E
Full Access

Abstract. Objectives. Prediction of bone adaptation in response to mechanical loading is useful in the clinical management of osteoporosis. However, few studies have investigated the effect of repeated mechanical loading in the mouse tibia. Therefore, this study uses a combined experimental and computational approach to evaluate the effect of mechanical loading on bone adaptation in a mouse model of osteoporosis. Methods. Six female C57BL/6 mice were ovariectomised (OVX) at week 14 and scanned using in vivo micro computed tomography (10.4µm/voxel) at week 14, 16, 18, 20 and 22. The right tibiae were mechanically loaded in vivo at week 19 and 21 with a 12N peak load, 40 cycles/day, 3 days/week. Linear isotropic homogeneous finite element (microFE) models were created from the tissue mineral density calibrated microCT images. Changes in bone adaptation, densitometric and spatial analyses were measured by comparing the longitudinal images after image registration. Results. Mechanical loading increased periosteal apposition between weeks 18–20, which reduced slightly between weeks 20–22. Periosteal resorption reduced between weeks 18–20. At weeks 20–22, it remained lower than before treatment, but was up to 70% higher than after the first week of loading. Average SED increased due to OVX before decreasing due to mechanical loading. The highest increase in SED was at the proximal tibia between weeks 14 to 16 (102%), whereas the highest reduction (40%) occurred after the second week of loading in the proximal tibia. Conclusions. The decrease/increase in bone apposition/resorption between weeks 20–22, despite the similar strain distributions between weeks 18–20 and 20–22, suggests that the first application of mechanical loading had a greater effect on reversing the adverse effects of the disease than the second. This imply that a systematic increase in peak load or loading rate may be required to achieve a similar bone adaptation rate with time. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 48 - 48
1 Mar 2021
Tavana S Freedman B Baxan N Hansen U Newell N
Full Access

Abstract. Objectives. Back pain will be experienced by 70–85% of all people at some point in their lives and is linked with intervertebral disc (IVD) degeneration. The aim of this study was to 1) compare 3D internal strains in degenerate and non-degenerate human IVD under axial compression and 2) to investigate whether there is a correlation between strain patterns and failure locations. Methods. 9.4T MR images were obtained of ten human lumbar IVD. Five were classed as degenerate (Pfirrmann = 3.6 ± 0.3) and five were classed as non-degenerate (Pfirrmann = 2.0 ± 0.2). MR Images were acquired before applying load (unloaded), after 1 kN of axial compression, and after compression to failure using a T2-weighted RARE sequence (resolution = 90 µm). Digital Volume Correlation was then used to quantify 3D strains within the IVDs, and failure locations were determined from analysis of the failure MRIs. Results. Average of axial strains were higher (p<0.05) in the degenerate samples compared to the non-degenerate (−3.4 vs-5.2%, respectively), particularly in the posterior and lateral annulus (−6.2 vs −3.6%, and −5.6 vs −3.5%, respectively). Maximum 3D compressive strains were higher (p<0.05) in the posterior annulus and nucleus regions of the degenerate discs compared to non-degenerate (−9.8 vs −6.2%, and −7.7 vs −5.5%, respectively). In all samples peak tensile and shear strains were observed close to the endplates. All samples failed through the endplates with fractures in the nucleus region in all non-degenerate samples, and fractures in the lateral annulus regions in all degenerate samples. Conclusion. Degeneration caused significant changes to strain distributions within IVDs, particularly at the lateral and posterior AF regions. A shift from endplate failure in the nucleus to the annulus region was observed which was also seen in peak axial internal strains demonstrating a possible correlation between internal IVD strains, and endplate failure locations. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 64 - 64
1 Jan 2017
Pereira J Ramos A Completo A
Full Access

Positioning of the hip resurfacing is crucial for its long term survival and is critical in young patients for some reasons; manly increase the wear in the components and change the load distribution. THR have increased in the last years, mainly in young patients between 45 to 59 years old. The resurfacing solution is indicated for young patients with good bone quality. A long term solution is required for these patients to prevent hip revision. The resurfacing prosthesis Birmingham Hip Resurfacing (BHR) was analyzed in the present study by in vitro experimental studies. This gives indications for surgeons when placing the acetabular cup. One synthetic left model of composite femur (Sawbones®, model 3403), which replicates the cadaveric femur, and four composite pelvic bones (Sawbones®, model 3405), were used to fix the commercial models of Hip resurfacing (Birmingham model). The resurfacing size was chosen according to the head size of femurs with 48 mm head diameter and a cup with 58 mm. They were introduced by an experimented surgeon with instrumental of prosthesis. The cup is a press fit system and the hip component was cemented using bone cement Simplex, Stryker Corp. The acetabular cup was analyzed in 4 orientations; in anteverion with 15º and 20°; and in inclination 40 and 45°. Combinations of these were also considered. The experimental set-up was applied according to a system previously established by Ramos et al. (2013) in the anatomic position. The femur rotates distally and the Pelvic moves vertically as model changes, such that the same boundary conditions are satisfied. This system allows compensating motions of the acetabular cup orientation. A vertical load of 1700 N was applied on all cases, which have resulted in joint reaction force of 2.4 kN. The femur and iliac bone was instrumented with rosettes. 5 repetitions at each position were conducted. When the femur was instrumented with three rosettes in medial, anterior and posterior aspect, the maximum strain magnitude was observed in the medial aspect of femur with a minimum principal strain of −2070µε for 45° inclination and 20° of anterversion. The pubic region was found most critical region after instrumenting the Iliac bone with four rosettes, with a minimum principal strain around −2500µε (rosette 1), for the 45° inclination and 20° of anterversion. We have observed the great influence of the inclination on the strain distribution, changing its magnitude from compression to traction in different bone regions. The minimum principal strain is more critical in medial aspect of the femur and the influence of strain is about 7% when orientation and inclination change. The maximum influence was observed in the anterior aspect, where the anteversion presents a significant influence. The results show the interaction between inclination and anterversion in all aspects, being observed lower values in lower angles. The orientation of the acetabular cup significantly influences the strain distribution on the iliac surface. Besides, as anterversion increases, more strains are induced, mainly in the region of iliac body (rosette 3)


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 61 - 61
1 Dec 2020
Ramos A Mesnard M Sampaio P
Full Access

Introduction. The ankle cartilage has an important function in walking movements, mainly in sports; for active young people, between 20 and 30 years old, the incidence of osteochondral lesions is more frequent. They are also more frequent in men, affecting around 21,000 patients per year in USA with 6.5% of ankle injuries generating osteochondral lesions. The lesion is a result of ankle sprain and is most frequently found in the medial location, in 53% of cases. The main objective of this work was to develop an experimental and finite element models to study the effect of the ankle osteochondral lesion on the cartilage behavior. Materials and Methods. The right ankle joint was reconstructed from an axial CT scan presenting an osteochondral lesion in the medial position with 8mm diameter in size. An experimental model was developed, to analyze the strains and influence of lesion size and location similar to the patient. The experimental model includes two cartilages constructed by Polyjet™ 3D printing from rubber material (young modulus similar to cartilage) and bone structures from a rigid polymer. The cartilage was instrumented with two rosettes in the medial and lateral regions, near the osteochondral region. The fluid considered was water at room temperature and the experimental test was run at 1mm/s. The Finite element model (FE) includes all the components considered in the experimental apparatus and was assigned the material properties of bone as isotropic and linear elastic materials; and the cartilage the same properties of rubber material. The fluid was simulated as hyper-elastic one with a Mooney-Rivlin behavior, with constants c1=0.07506 and c2=0.00834MPa. The load applied was 680N in three positions, 15º extension, neutral and 10º flexion. Results. The experimental strain measured in the cartilage in the rosettes presents similar behavior in all experiments and repetitions. The maximum value observed near the osteochondral lesion was 3014(±5.6)µε in comparison with the intact condition it was 468 (±1.95)µε. The osteochondral lesion increases the strains around 6.5 times and the synovial liquid reduces the intensity of strain distribution. The numerical model presents a good correlation with the experiments (R2 0.944), but the FE model underestimates the values. Discussion and conclusion. As a first conclusion, the size of the osteochondral lesion is important for the strains developed in cartilage. The size of lesion greater than 10mm is critical for the strains concentration. The synovial fluid present an important aspect in the strains measured, it reduces the strains in the external surface of cartilage and induces an increase in the lower part. This phenomenon should be addressed in more studies to evaluate this effect


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 28 - 28
1 Apr 2017
Rastetter B Wright S Gheduzzi S Miles A Clift S
Full Access

Background. Finite element (FE) models are frequently used in biomechanics to predict the behaviour of new implant designs. To increase the stability after severe bone loss tibial components with long stems are used in revision total knee replacements (TKR). A clinically reported complication after revision surgery is the occurrence of pain in the stem-end region. The aim of this analysis was the development of a validated FE-model of a fully cemented implant and to evaluate the effect of different tibial stem orientations. Methods. A scanned 4th generation synthetic left tibia (Sawbones) was used to develop the FE-model with a virtually implanted fully cemented tibial component. The 500 N load was applied with medial:lateral compartment distributions of 60:40 and 80:20. Different stem positons were simulated by modifying the resection surface angle posterior to the tibias shaft axis. The results were compared with an experimental study which used strain gauges on Sawbones tibias with an implanted tibial TKR component. The locations of the experimental strain gauges were modelled in the FE study. Results. Similar patterns and magnitudes of the predicted and experimentally measured strains were observed which validated the FE-model. An increase of strain at the most distal gauge locations were measured with the stem-end in contact to the posterior cortical bone. More uniform strain distributions were observed with the stem aligned to the intramedullary canal axis. The load distribution of 80:20 shifts the strains to tensile laterally and a large increase of compressive strain in the medial distal tibia. Conclusions. A contributory factor of the clinically reported stem-end pain is possibly the direct effect of contact of the tibial stem-end to the posterior region of the cortical bone. The increased load to the medial tibial compartment is more critical for the development of pain


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 51 - 51
1 Jan 2017
Ramos A Mesnard M
Full Access

The Temporomandibular joint (TMJ) is a complex and important joint for daily activities, and the alloplastic implant is recommended as the best solution, after repeated surgeries, failed autogenous grafts, highly inflammatory metabolic arthritis, fibrous or bony ankyloses. Some complications in total TMJ replacement are associated with implant design, screw fixation failure, implant displacement, fibrous tissue formation, (Speculand, et al. 2000). Some numeric studies evaluate the number of screws needed to guarantee the good fixation and suggest a minimum of three (Ramos et al. 2015), but is a controversy conclusion. The Biomet Microfixation TMJ stock prosthesis, Jacksonville, FL, USA is one of the three or four in the market. Clinical studies published by this device between 2005 and 2015 indicate a success rate of around 84 to 91% with improvements in mouth opening, a decrease in pain score and improved quality of life. The present study analyses experimentally the load transfer of this device. The intact, clean cadaveric ramus was instrumented with four rosettes model (KFG-1-120-D17-11 L3M2S, by Kywoa Electronic Instruments Co™, Japan), one in lateral region, two in lateral region and one in lingual face. The condyle was loaded with the temporal reaction; the load was applied constant velocity of 1mm/min in three continuum phases and with three stops at 100N, 200N and 300N. Next, the Biomet microfixation implant was fixed to the same cadaveric mandibular ramus after resection. The implant was 50mm in length. It was fixed with five 6AL/4V Titanium self-tapping screws with 2.7mm diameter were long enough to establish a bi-cortical support. The screws were screwed into the bone with a torque-screwdriver a constant torque of 0.2Nm. The same rosettes were analyzed before and after implantation and the mandible displacement two. The experimental results for the mandibular ramus present a linear behavior up to 300N load in condyle, with the Biomet implant influencing strain distribution; the maximum influence was near the implant (rosette #4) is around 59%. The average vertical displacement of the mandibular ramus (300N) was measured by machine: 1.18 (±0.02) mm for the intact mandibular ramus and 1.21 (±0.02) mm for the implanted one, which represents a 2.8% differences between the experimental models and reduce of stiffness. The maximum principal strain deformation was observed in the rosette #3 with 1360µε more 20% than the intact mandible for 300N of reaction. The experimental results show that the Biomet TMJ mandibular ramus implant changes the load transfer in the ramus, compared to the intact, with its strain shielding effect. The results indicate the minimum number of screws is three to guarantee a good load transfer but the surface preparation of condyle presents an important factor


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 18 - 18
1 Jan 2017
Palanca M Cristofolini L Pani M Kinene E Blunn G Madi K Tozzi G
Full Access

DVC allowed measurements of displacement and strain distribution in bone through the comparison of two, or more, 3D images. Hence, it has a potential as a diagnostic tool in combination with clinical CT. Currently, traditional computed tomography (CT) allows for a detailed 3D analysis of hard tissues, but imaging in a weight-bearing condition is still limited. PedCAT-CT (Curvebeam, USA) emerged as a novel technology allowing, for the first time, 3D imaging under full-weight bearing (Richter, Zech et al. 2015). Specifically, a PedCAT-CT based DVC was employed to establish its reliability through the strain uncertainties produced on bone structure targets, preliminarily to any further clinical studies. In addition, a reverse engineering FE modeling was used to predict possible force associated to displacement errors from DVC. Three porcine thoracic vertebrae were used as bone benchmark for the DVC (Palanca, Tozzi et al. 2016, Tozzi, Dall'Ara et al. 2016). The choice of using porcine vertebrae (in a CT designed for foot/ankle) was driven by availability, as well as similar dimensions to the calcaneus. Each vertebra was immersed in saline solution and scanned twice without any repositioning (zero-strain-test) with a pedCAT-CT (Curvebeam, USA) obtaining an isotropic voxel size of 370 micrometers. Volumes of interest of 35 voxel were cropped inside the vertebrae. Displacement and strains were evaluated using DVC (DaVis-DC, LaVision, Germany), with different spatial resolution. The displacement maps were used to predict the force uncertainties via FE (Ansys Mechanical v.14, Ansys Inc, Canonsburg, PA). Each element was assigned a linear elastic isotropic constitutive law (Young modulus: 8 GPa, Poisson's ratio: 0.3, as in (Follet, Peyrin et al. 2007)). Overall, the precision error of strain measurement was evaluated as the average of the standard deviation of the absolute value of the different component of strain (Liu and Morgan 2007). The force uncertainties obtained with the FE analysis produced magnitudes ranging from 231 to 2376 N. No clear trend on the force was observed in relation to the spatial resolution. Precision errors were smaller than 1000 microstrain in all cases, with the lowest ranging from 83 microstrain for the largest spatial resolution. Full-field strain on the bone tissue did not seem to highlight a preferential distribution of error in the volume. The precision errors showed that the pedCAT-CT based DVC can be sufficient to investigate the bone tissue failure (7000–10000 microstrain) or, physiological deformation if well-optimized. FE analysis produced important force uncertainties up to 2376 N. However, this is a preliminary investigation. Further investigation will give a clearer indication on DVC based PedCAT-CT, as well as force uncertainties predicted. So far, the DVC showed its ability to measure displacement and strain with reasonable reliability with clinical-CT as well