Advertisement for orthosearch.org.uk
Results 1 - 20 of 548
Results per page:
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 58 - 58
1 Dec 2022
Ruzbarsky J Comfort S Pierpoint L Day H Philippon M
Full Access

As the field of hip arthroscopy continues to develop, functional measures and testing become increasingly important in patient selection, managing patient expectations prior to surgery, and physical readiness for return to athletic participation. The Hip Sport Test (HST) was developed to assess strength, coordination, agility, and range of motion prior to and following hip arthroscopy as a functional assessment. However, the relationship between HST and hip strength, range of motion, and hip-specific patient reported outcome (PRO) measures have not been investigated. The purpose of this study was to evaluate the correlation between the HST scores and measurements of hip strength and range of motion prior to undergoing hip arthroscopy. Between September 2009 and January 2017, patients aged 18-40 who underwent primary hip arthroscopy for the treatment of femoroacetabular impingement with available pre-operative HST, dynamometry, range of motion, and functional scores (mHHS, WOMAC, HOS-SSS) were identified. Patients were excluded if they were 40 years old, had a Tegner activity score < 7, or did not have HST and dynamometry evaluations within one week of each other. Muscle strength scores were compared between affected and unaffected side to establish a percent difference with a positive score indicating a weaker affected limb and a negative score indicating a stronger affected limb. Correlations were made between HST and strength testing, range of motion, and PROs. A total of 350 patients met inclusion criteria. The average age was 26.9 ± 6.5 years, with 34% females and 36% professional athletes. Total and component HST scores were significantly associated with measure of strength most strongly for flexion (rs = −0.20, p < 0 .001), extension (rs = −0.24, p<.001) and external rotation (rs = −0.20, p < 0 .001). Lateral and diagonal agility, components of HST, were also significantly associated with muscle strength imbalances between internal rotation versus external rotation (rs = −0.18, p=0.01) and flexion versus extension (rs = 0.12, p=0.03). In terms of range of motion, a significant correlation was detected between HST and internal rotation (rs = −0.19, p < 0 .001). Both the total and component HST scores were positively correlated with pre-operative mHHS, WOMAC, and HOS-SSS (p<.001 for all rs). The Hip Sport Test correlates with strength, range of motion, and PROs in the preoperative setting of hip arthroscopy. This test alone and in combination with other diagnostic examinations can provide valuable information about initial hip function and patient prognosis


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 61 - 61
1 Dec 2022
Zhu S Ogborn D MacDonald PB McRae S Longstaffe R Garofalo J
Full Access

While controversy remains as to the relative benefit of operative (OM) versus non-operative management (NOM) of Achilles tendon ruptures (ATR), few studies have examined the effect on high impact maneuvers such as jumping and hopping. The purpose of this study is to compare functional performance and musculotendinous morphology in patients following OM or NOM for acute ATR. Eligible patients were aged 18-65 years old with an ATR who underwent OM or NOM within three weeks of injury and were at least one-year post injury. Gastrocnemius muscle thickness and Achilles tendon length and thickness were assessed with ultrasound. Functional performance was examined with single-leg hop tests and isokinetic plantar strength at 60o/s and 120o/s. 24 participants completed testing (12/ group). Medial (OM: 2.2 ± 0.4 cm vs 1.9 ± 0.3 cm, NOM 2.15 ± 0.5 cm vs 1.7 ± 0.5 cm; p = 0.002) and lateral (OM 1.8 ± 0.3 cm vs 1.5 ± 0.4 cm, NOM 1.6 ± 0.4 cm vs 1.3 ± 0.5 cm; p = 0.008) gastrocnemius thickness were reduced on the affected limb. The Achilles tendon was longer (OM: 19.9 ± 2.2 cm vs 21.9 ± 1.6 cm; NOM: 19.0 ± 3.7 cm vs 21.4 ± 2.9 cm; p = 0.009) and thicker (OM: 0.48 ± 0.16 cm vs 1.24 ± 0.20 cm; NOM: 0.54 ± 0.08 cm vs 1.13 ± 0.23 cm; p < 0.001) on the affected limb with no differences between groups. Affected limb plantar flexion torque at 20o plantar flexion was reduced at 60o/s (OM: 55.6 ± 20.2 nm vs 47.8 ± 18.3 nm; NOM: 59.5 ± 27.5 nm vs 44.7 ± 21.0 nm; p = 0.06) and 120o/s (OM: 44.6 ± 17.9 nm vs 36.6 ± 15.0 nm; NOM: 48.6 ± 16.9 nm vs 35.8 ± 10.7 nm; p = 0.028) with no group effect. There was no difference in single leg hop performance. Achilles tendon length explained 31.6% (p = 0.003) and 18.0% (p = 0.025) of the variance in plantar flexion peak torque limb symmetry index (LSI) at 60o/s and 120o/s respectively. Tendon length explained 28.6% (p=0.006) and 9.5% (p = 0.087) of LSI when torque was measured at 20o plantar flexion at 60o/s and 120o/s respectively. Conversely, tendon length did not predict affected limb plantar flexion peak torque (nm), angle-specific torque at 20o plantar flexion (nm) and affected limb single leg hop distance (cm) or LSI (%). There was no difference in tendon length between treatment groups and deficits in gastrocnemius thickness and strength are persistent. Deficits in the plantar flexion strength LSI are partially explained by increased tendon length following Achilles tendon rupture, regardless of treatment strategy. Hop test performance is maintained and may be the result of compensatory movements at other joints despite persistent plantarflexion weakness


Purpose. The Purpose of this study was to evaluate hamstring strength after autogenous hamstring anterior cruciate ligament(ACL) reconstruction with emphasis on deeper knee flexion angles. A comparison of hamstring strength between patients undergoing ACL reconstruction using semitendinosus(ST), and those with semitendinosus and Gracilis(STG) tendons was conducted. Method. Sixty patients were prospectively followed after undergoing ACL reconstruction surgery. Forty patients received a ST graft, and 20 patients had a STG graft. All patients had standard IKDC subjective knee evaluation completed, and had bilateral hamstring strengths tested using isokinetic testing with a Cybex Orthotron machine. In addition, a hand held Microfet dynamometer was used to measure hamstring strengths at deeper knee flexion angles at six, 12, and 24 months. Results. When comparing the surgical hamstring strength compared to the control side at deeper knee flexion angle, the STG and ST group had and average of 65.0% and 79.8% strength respectively at 6 months(p<0.05). While at one year the STG and ST group had 63.6%, and 78.3% of their hamstring strength(p<0.05). Conclusion. Hamstring strength at deeper flexion angles after ACL reconstruction using autogenous semitendinosus and gracilis tendons is significantly weaker than using semitendinosus alone. The use of single tendon ACL reconstruction should be advocated to decrease morbidity of this procedure


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 101 - 101
1 Apr 2019
Eymir M Unver B Karatosun V
Full Access

Background. Revision total knee arthroplasties (rTKA) are performed with increasing frequency due to the increasing numbers of primary arthroplasties, but very little is known regarding the influence of muscle strength impairments on functional limitations in this population. Objectives. The aim of this study was to assess relationship between muscle strength and functional level in patient with rTKA. Design and Methods. Twenty-three patients (8 males, 15 females) were included in the study with mean age 68.4±10 years. Patients performed 3 performance tests (50-Step Walking Test, 10 Meter Walk Test, 30-Second Chair-Stand Test), and one self-report test (HSS) were preferred to assess patients. The maximum isometric muscle strength of quadriceps femoris and hamstring muscles of all the patients was measured using Hand-Held Dynamometer (HHD). Results. While moderate-to-strong significant correlations was found between quadriceps femoris muscle strength and 30- Second Chair-Stand Test (r=0.390, p=0.049), 50-Step Walking Test (r=−0.530, p=0.005), 10 Meter Walk Test (r=−0.587, p=0.002), there were not significant correlation between HSS knee score and all performance-based tests (p>0.05). Also there were not significant correlation between hamstring muscle strength and all other measurement tests (p>0.05). Conclusion. The moderate-to-strong statistical significant correlation between quadriceps femoris muscle strength and functional performance tests suggests that improved postoperative quadriceps strengthening could be important to enhance the potential benefits of rTKA


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 36 - 36
1 Mar 2017
Mueller U Kretzer J
Full Access

Introduction. Taper corrosion and fretting has been identified to be a major problem in total hip replacement during the past years. Taper design and manufacturing are not been standardised, and therefore it can be assumed that the tapers vary among different implant manufacturers. This can lead to variable contact situations and stresses in the taper junction depending on the combination. It can be assumed that the taper strength will influence the occurrence and magnitude of micromotions which are known to influence corrosion. Therefore, the aim of this study was to assess the influence of the taper angle clearance on the taper connection strength. Material & Methods. For the investigation stem dummys with different taper angles were used that were manufactured from titanium alloy. The stem dummys were combined with ceramic heads with identically taper angles. Out of this, there were seven groups ranging from distal contact through full contact up to proximal contact. Three samples were used in each group and five repetitive measurements per samples were performed. All taper connections were impacted with different forces (1 kN, 3 kN, 6 kN and 10 kN) and afterwards an increasing torque was applied until the head disconnected. The maximal torque off value was used as a measure for the taper strength. Results. A greater taper clearance leads to a higher taper strength (Fig. 1). However, this effect is also influenced by the assembly force and becomes even stronger with higher assembly forces. When comparing a distal, full and proximal contact situation the full contact shows the lowest taper strength, whereas the distal contact situation leads to the highest taper strength. Discussion and conclusion. The design variability in taper connections influences its strength. A smaller contact area leads to higher local contact pressure. It is assumed that this increases local plastic deformations of the surface structure which is beneficial for this self-locking mechanism of the junction. However, the effect of the assembly force seems to overcome the effect of the taper clearance. Therefore taper junctions should be firmly connected in total hip replacements. Furthermore, surgeons should be aware that in a clinical case of a Mix & Match the taper strength may be reduced depending on the combined components. For figures/tables, please contact authors directly.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 82 - 82
1 Feb 2020
Zobel S Huber G King M Pfeiffer D Morlock M
Full Access

Introduction. During revision surgery, the active electrode of an electrocautery device may get close to the implant, potentially provoking a flashover. Incidents have been reported, where in situ retained hip stems failed after isolated cup revision. Different sizes of discoloured areas, probably induced by electrocautery contact, were found at the starting point of the fracture. The effect of the flashover on the implant material is yet not fully understood. The aim of this study was to investigate the fatigue strength reduction of Ti-6Al-4V titanium alloy after electrocautery contact. Material and Methods. 16 titanium rods (Ti-6Al-4V, extra low interstitial elements, according to DIN 17851, ⊘ 5 mm, 120 mm length) were stress-relief annealed (normal atmosphere, holding temperature 622 °C, holding time 2 h) and cooled in air. An implant specific surface roughness was achieved by chemical and electrolytic polishing (Ra = 0.307, Rz = 1.910). Dry (n = 6) and wet (n = 6, 5 µl phosphate buffered saline) flashovers were applied with a hand-held electrode of a high-frequency generator (Aesculap AG, GN 640, monopolar cut mode, output power 300 W, modelled patient resistance 500 Ω). The size of the generated discoloured area on the rod's surface - representative for the heat affected zone (HAZ) - was determined using laser microscopy (VK-150x, Keyence, Japan). Rods without flashover (n = 4) served as control. The fatigue strength of the rods was determined under dynamic (10 Hz, load ratio R = 0.1), force-controlled four-point bending (FGB Steinbach GmbH, Germany) with swelling load (numerical bending stress 852 MPa with a bending moment of 17.8 Nm) until failure of the rods. The applied bending stress was estimated using a finite-element-model of a hip stem during stumbling. Metallurgical cuts were made to analyse the microstructure. Results. The control rods failed at the pushers of the setup (median: 94,550, range: 194,000 cycles). The rods with flashover failed directly at the HAZ significantly earlier than the control rods (p = 0.018). The analysis of the microstructure showed a transformation of the equiaxed α+β microstructure to a bimodal state. The size of the HAZs were equal for the dry (median: 1.51 mm. 2. , range: 5.68 mm. 2. ) and wet flashovers (median: 0.92 mm. 2. , range: 2.50 mm. 2. , p = 0.792). The cycles to failure were smaller for the dry flashover (median: 22,650 cycles, range: 5,700) than the wet flashover but not reaching statistical significance (median: 32,200, range: 57,900; p = 0.052). No correlation between the dimension of the HAZs and the cycles to failure was found (dry: r. 2. = 0.019, p = 0.8; wet: r. 2. = 0.015, p = 0.721). Discussion. Flashovers induced by an electrocautery device reduce the fatigue strength of Ti-6Al-4V. Since no correlation between the size of the HAZs and the cycles to failure was found, every contact between electrocautery devices and metal implants should be avoided. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_6 | Pages 61 - 61
1 Apr 2018
Upmann C Eisele M Pandorf T
Full Access

Introduction. Ceramic ball heads are well known in hip arthroplasty for their superior tribology performance and high burst strength. To assess the ball head performance and the in-vivo fracture risk Pandorf et al 2008 examined the burst strength of BIOLOX®forte (pure aluminium oxide ceramic, CeramTec GmbH, Plochingen, Germany) ball heads on clean standard test tapers and contaminated test tapers. They found that fat tissue and scratches are reducing the burst strength to 40% and to 20% of the reference burst strength, respectively. The aim of this work is to investigate if BIOLOX®delta (alumina matrix ceramic, CeramTec GmbH, Plochingen, Germany) ball heads show a similar behaviour as BIOLOX®forte ball heads with respect to taper contamination. Materials and Methods. Each test series consisted of n=5 BIOLOX®delta 28–12/14 L ball heads and n=5 metal test tapers (Ti-6Al-4V, ISO 5832-3). For the reference series the metal tapers remained untouched representing the CeramTec standard test procedure. For the fluid series the ball heads were filled up with tap water or calf blood serum. For the solid series the metal test tapers were contaminated with small particles of bovine bone, commercially available bone cement and porcine fat tissue in the engagement zone. A chisel and a slight hammer tap were used to scratch the proximal region of the metal test taper. The ball heads were then manually attached to the contaminated metal test tapers without further force appliances. An apparatus according to ISO 7206-10 was used for burst testing. The tests were performed at CeramTec in-house test laboratory. Results. The contamination of the taper region showed an influence on the resulting burst strength which was qualitatively similar to the previously performed investigations with pure alumina ball heads. Discussion. Sterilized water is used for cleaning the surgical wound before attaching the ball head on the metal taper. A contamination of the metal taper with water is reducing the burst strength of BIOLOX®delta ball heads to 80% reference burst strength. Remains of blood and bone particles on the metal taper can lead to 63% of the reference burst strength. Remains of fat tissue on the metal taper can lead to 38% of the reference burst strength. The fat tissue is reducing the coefficient of friction, which leads in further consequence to a change of the stress distribution and a raise of the stress magnitude in the ceramic ball head. Scratches and grooves have the ability to reduce the burst strength to only 29% reference burst strength. The results confirm that the taper connection of the components have to be clean and dry in order to provide a sufficient and strong connection


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_21 | Pages 70 - 70
1 Dec 2016
Alhamzah H Hart A AlSaran Y Burman M Martineau P
Full Access

Our study is still in progress. The results mentioned in the abstract are preliminary results. The final results will be provided at the time of presentation. Over the past decade, the widespread availability of high-resolution ultrasonography coupled with advances in regional anaesthesia have popularised peripheral nerve blocks for anterior cruciate ligament reconstructions (ACLRs). The aim of this study is to investigate whether the femoral nerve block (FNB) administered at the time of ACLR has any long-term impact on the quadriceps strength as compared to patients who did not receive a FNB. This is a retrospective study. Four hundred charts of patients who underwent ACLR at our institution and had subsequent Biodex testing (an isokinetic rehabilitation test that provides objective information about muscle strength deficits and imbalances of the operated leg compared to the non-operated leg) from 2004 to 2015 were reviewed. Patients who had prior ipsilateral knee surgery, multi-ligament knee injury or at extreme ages were excluded from the study. The following baseline patient characteristics was recorded for each reviewed chart: age, sex, medical comorbidities, the date of the injury, date of the surgery, surgery technical notes and associated procedures, the surgeon, the hospital were the patient was operated, the Biodex test date and the Biodex test results. Data extraction assessed any association between the ACLR patients' who received FNB with the results of the Biodex test after completing the rehabilitation protocol. Descriptive statistics were used to compare the type of anaesthesia, mode of pain control and the results of the Biodex tests between patients grouped by the mode of anaesthesia used at the time of surgery (FNB versus no FNB). A multivariate regression model then compared quadriceps strength (inferred by Biodex test results) between groups while controlling for baseline differences between groups. Fifty five percent of the ACLR patients received FNB compared to 45% that did not receive FNB over the last 11 years of performing ACLRs (2004–2015) at our institute. Fifty percent of the patients that received FNB failed to achieve more than or equal to 80% quadriceps strength (compared to the contralateral non-operated leg) at 6 months on Biodex test. On the other hand, only 20% of the non-FNB group failed to achieve more than or equal to 80% quadriceps strength. This study lead us to think that ACLR patients that received FNB are significantly weaker in quadriceps strength at 6 months post ACLR in comparison to non-FNB ACLR patients. This finding subsequently might affect the time needed to return to sports and might indicate a considerable clinical consequence of the FNB on ACL-reconstruction patients


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 77 - 77
1 Mar 2017
Wang H Foster J Franksen N Rolston L
Full Access

Background. More and more patients with end-stage knee OA are treated with total knee replacements (TKR). A modern TKR (Persona PS system, Zimmer Inc.) was designed with the hope to improve fit by providing additional sizing options on the femur and tibia. To date, there is very little information regarding the knee strength and knee mechanics during gait after the TKR. Furthermore, as a great percentage of knee OA patients have OA limited in one knee compartment and in the patellofemoral joint, a bi-compartmental knee replacement (BKR) (iDUO system, ConforMIS Inc.) was designed to treat OA at these affected areas. The BKR re-creates the individual's knee shape while correcting for any deformity. In addition, the BKR procedure results in less bone loss and retains the cruciate ligaments. To date, the influence of the BKR on knee strength and knee mechanics remains unknown. The purpose of the study was to evaluate knee strength and mechanics during level walking after the TKR and BKR surgeries. Methods. Twelve healthy control participants (age=57±6 yr.; mass=82±11 kg; height=175±11 cm), eight patients (age=63±10 yr.; mass=87±20 kg; height=166±8 cm) with ten BKR systems (post-op time = 17±9 mo.), and nine patients (age=65±9 yr.; mass=90±35 kg; Height=169±12 cm) with twelve TKR systems (post-op time = 14±5 mo.) participated in the study. In a laboratory setting, maximal isometric knee strength was evaluated. Motion capture and 3D kinematic and kinetic analyses were conducted for level walking. One way ANOVA was used to determine differences among the BKR, TKR, and the healthy control knees. Findings. The TKR knee extensor strength was 34% and 20% less than that of the control limb (p<0.05) and the BKR limb (p=0.07), respectively. The TKR limb had less knee extensor moment during walking than both the control limb (40% less) and the BKR limb (24% less) (p<0.05). The TKR knee displayed smaller internal rotation at stance than that of the control knee (60% less) and the BKR knee (50% less) (p<0.05). Both the control and BKR groups walked at a faster pace (24% and 17% faster, respectively) than the TKR group (p<0.05). No differences were found for peak knee abduction and abduction moment among the TKR, BKR, and control limbs during walking (p0.05). Interpretations. BKR patients saw their knee extensor strength returned to a normal level and were able to produce the same level of knee extensor moment of the healthy control limbs during walking. The TKR patients still experienced knee strength deficit after one year post-surgery. Both the TKR and BKR groups exhibited similar frontal plane mechanics when compared to the control limbs during walking. However, BKR patients were able to walk significantly faster than their TKR counterparts, at speeds similar to the control subjects. Patients with OA limited in the medial/lateral compartment and the patellofemoral joint may consider the BKR procedure for better knee strength recovery and functional outcomes. Acknowledgement. Funding source: ConforMIS Inc


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 82 - 82
1 May 2016
Bakirhan S Unver B Bozan O Karatosun V Gunal I
Full Access

Purpose. Investigating the effects of femoral stem length on hip and knee muscle strength. Methods. The study included 20 patients having undergone total knee prostheses (TKP) due to coxarthrosis and 10 healthy subjects. Of the 20 patients, 10 underwent conventional TKP and 10 had Thrust Plate Prothesis (TPP). For the assessment of the patients’ muscle strength of operated and non-operated hips (Gl. medius and Gl. Maximus) and knees (Quadriceps Femoris-QF), the Hand-Held Dynamometer (HHD) was used. Results. A significant difference was observed in the muscle strength of Gl. medius in TPP patients and of Gl. maksimus in conventional TKP patients (p <0.05). Compared to the healthy group, only hip muscle strength decreased in TPP patients, but both hip and knee muscle strengths decreased in conventional TKP patients (p <0.05). Conclusion. A decrease in hip and knee muscle strengths was determined in the TPP and conventional THA patients, compared to healthy subjects. Compared to the bone protective prosthetic systems (eg TPP), a significant difference is observed in the QF muscle strength in intramedullary prosthesis applications. This data may be used in planning the treatment of patients with hip arthroplasty


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 82 - 82
1 Nov 2016
Goetz T Kilb B Okada M
Full Access

This is largest collection of outcomes of distal biceps reconstruction in the literature. 8 subjects prospectively measured pre and post reconstruction Strength deficit in patients with chronic tendon deficit is described. To describe outcomes for 53 chronic distal biceps reconstructions with tendon graft. Clinical outcomes as well as strength and endurance in supination and flexion are reported. To examine eight patients measured pre- and post-reconstruction. To identify deficit in supination and flexion in chronic reconstruction. 53 reconstructions of chronic distal biceps with tendon graft were carried out between 1999 and 2015. 26 subjects agreed to undergo strength testing after minimum one year follow up. Eight subjects were tested both before and after reconstruction. Primary outcomes were strength in elbow flexion and forearm supination. Strength testing of supination and flexion included maximum isokinetic power and endurance performed on a Biodex. Clinical outcomes measures included pre-operative retraction severity, surgical fixation technique, postoperative contour, range of motion, subjective satisfaction, SF-12, DASH, MAYO elbow score, ASES and pain VAS Non-parametric data was reported as median (interquartile range), while normally-distributed data was reported as mean with 95% Confidence Limits. Hypothesis testing was performed according to two-tailed, paired t-tests. Median time from index rupture to reconstructions 9.5 (range 3–108) months. Strength measurements were completed at a median follow-up time of 29 (range 12–137) months on 26 subjects. The proportion of patients that achieved 90% strength of the contralateral limb post-reconstruction was 65% (17/26) for peak supination torque, and 62% (16/26) for peak flexion torque. Supination and flexion endurance was 90% of the contralateral arm in 81% (21/26) and 65% (17/26) of subjects, respectively. Ten subjects (39%) achieved 90% strength of the contralateral arm on at least four of five strength tests. Eight of the 26 patients were evaluated pre- and post-surgery. As compared to the contralateral limb, chronic distal biceps rupture was found to have a mean [95%CI] deficit in peak supination torque of 31.0 [21.0, 42.9]% (p=0.002). Mean deficit in peak flexion torque of 34.2 [23.1, 45.4]% (p <0.001). Reconstruction resulted in an increase in peak supination torque of 33.5 [8.7, 58.3]% (p=0.0162), increase in peak flexion torque of 35.0 [6.4, 63.6]% (p=0.023), increase in isometric strength of 57.6 [36.1, 79.1]% (p<0.001), increase in supination endurance of 0.6 [-22.2, 23.4]% (p=0.668), and a decrease in flexion endurance of 4.8 [-23.3, 13.7](p=0.478). Ninety-six percent of the patients (25/26) were satisfied, or very satisfied with the overall outcome of the surgery, while median Mayo score post-reconstruction was 100 (range: 55–100). Chronic distal biceps tendon rupture results in less supination loss and greater flexion loss than previously reported. Reconstruction with tendon graft results in a significant, but incomplete recovery of peak supination and flexion torque, but no significant change in endurance. Clinical patient satisfaction with surgical outcomes is high


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 108 - 108
1 Jan 2016
Walker D Kinney A Fregly B Wright T Banks S
Full Access

Current modeling techniques have been used to model the Reverse Total Shoulder Arthroplasty (RTSA) to account for the geometric changes implemented after RTSA. Though these models have provided insight into the effects of geometric changes from RTSA these is still a limitation of understanding muscle function after RTSA on a patient-specific basis. The goal of this study sought to overcome this limitation by developing an approach to calibrate patient-specific muscle strength for an RTSA subject. The approach was performed for both isometric 0° abduction and dynamic abduction. A 12 degree of freedom (DOF) model developed in our previous work was used in conjunction with our clinical data to create a set of patient-specific data (3 dimensional kinematics, muscle activations, muscle moment arms, joint moments, muscle length, muscle velocity, tendon slack length, optimal fiber length, peak isometric force)) that was used in a novel optimization scheme to estimate muscle parameters that correspond to the patient's muscle strength[4]. The optimization varied to minimize the difference between measured(“in vivo”) and predicted joint moments and measured (“in vivo”) and predicted muscle activations. The predicted joint moments were constructed as a summation of muscle moments. The nested optimization was implemented within matlab (Mathworks). The optimization yields a set of muscle parameters that correspond to the subject's muscle strength. The abduction activity was optimized. The maximum activation for the muscles within the model ranged between .03–2.4 (Figure 1). The maximum joint moment produced was 11 newton-meters. The joint moments were reproduced to an value of 1. Muscle parameters were calculated for both isometric and dynamic abduction (Figure 2). The muscle parameters produced provided a feasible solution to reproduce the joint moments seen “in vivo” (Figure 3). Current modeling techniques of the upper extremity focus primarily on geometry. In efforts to create patient-specific models we have developed a framework to predict subject-specific strength characteristics. In order to fully understand muscle function we need muscle parameters that correspond to the subject's strength. This effort in conjunction with patient-specific models that incorporate the patient's joint configurations, kinematics and bone anatomy hopes to provide a framework to gain insight into muscle tensioning effects after RTSA. With this framework improvements can be made to the surgical implementation and design of RTSA to improve surgical outcomes


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 74 - 74
1 Mar 2017
Walker D Kinney A Wright T Banks S
Full Access

Introduction. Current modeling techniques have been used to model the Reverse Total Shoulder Arthroplasty (RTSA) to account for the geometric changes implemented after RTSA [2,3]. Though these models have provided insight into the effects of geometric changes from RTSA these is still a limitation of understanding muscle function after RTSA on a patient-specific basis. The goal of this study sought to overcome this limitation by developing an approach to calibrate patient-specific muscle strength for an RTSA subject. Methods. The approach was performed for both isometric 0° abduction and dynamic abduction. A 12 degree of freedom (DOF) model developed in our previous work was used in conjunction with our clinical data to create a set of patient-specific data (3 dimensional kinematics, muscle activations (), muscle moment arms, joint moments, muscle length, muscle velocity, tendon slack length (), optimal fiber length, peak isometric force)) that was used in a novel optimization scheme to estimate muscle parameters that correspond to the patient's muscle strength[4]. The optimization varied to minimize the difference between measured (“in vivo”) and predicted joint moments and measured (“in vivo”) and predicted muscle activations (). The predicted joint moments were constructed as a summation of muscle moments. The nested optimization was implemented within matlab (Mathworks). The optimization yields a set of muscle parameters that correspond to the subject's muscle strength. The abduction activity was optimized [4,5]. To validate the model we predicted dynamic joint moment and activation for the abduction activity (Figure 1). Results. The muscle activation for the lateral deltoid had a normalized correlation of value of .91(Figure 1 left). The maximum joint moment produced was 18 newton-meters. The joint moments were reproduced to an value of 1 (Figure 1 Right). Muscle parameters were calculated for both isometric and dynamic abduction. The muscle parameters produced provided a feasible solution to reproduce the muscle activation and joint moments seen “in vivo” (Figure 1). Discussion. Current modeling techniques of the upper extremity focus primarily on geometric changes and their effects on shoulder muscle moment arms. In efforts to create patient-specific models we have developed a framework to predict subject-specific strength characteristics. In order to fully understand muscle function we need muscle parameters that correspond to the subject's strength. This effort in conjunction with patient-specific models that incorporate the patient's joint configurations, kinematics and bone anatomy provide a framework to gain insight into muscle tensioning effects after RTSA. This framework describes the relationship between muscle lengthening and muscle performance (recruitment and force generation). With this framework improvements can be made to the surgical implementation and design of RTSA to improve surgical outcomes. Significance. This abstract is the first of its kind to use patient-specific fluoroscopy kinematics, muscle activation and joint moments to create a framework to predict a patients muscle function (activation, force) for RTSA groups. This now allows us to understand how differences in implant design and surgical technique affect each muscle's ability to generate force and function. For any figures or tables, please contact authors directly (see Info & Metrics tab above).


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 15 - 15
1 Apr 2018
Walker D Kinney A Banks S Wright T
Full Access

Musculoskeletal modeling techniques simulate reverse total shoulder arthroplasty (RTSA) shoulders and how implant placement affects muscle moment arms. Yet, studies have not taken into account how muscle-length changes affect force-generating capacity postoperatively. We develop a patient-specific model for RTSA patients to predict muscle activation. Patient-specific muscle parameters were estimated using an optimization scheme calibrating the model to isometric arm abduction data at 0°, 45°, and 90°. We compared predicted muscle activation to experimental electromyography recordings. A twelve-degree of freedom model with experimental measurements created patient-specific data estimating muscle parameters corresponding to strength. Optimization minimized the difference between measured and estimated joint moments and muscle activations, yielding parameters corresponding to subjects' strength that can predict muscle activation and lengths. Model calibration was performed on RTSA patients' arm abduction data. Predicted muscle activation ranged between 3% and 70% of maximum. The maximum joint moment produced was 10 Nm. The model replicated measured moments accurately (R. 2. > 0.99). The optimized muscle parameters produced feasible muscle moments and activations for dynamic arm abduction when using data from isometric force trials. A normalized correlation was found between predicted and experimental muscle activation for dynamic abduction (r > 0.9); the moment generation to lift the arm was tracked (R. 2. = 0.99). Statement of Clinical Significance: We developed a framework to predict patient-specific muscle parameters. Combined with patient-specific models incorporating joint configurations, kinematics, and bone anatomy, they can predict muscle activation in novel tasks and, e.g., predict how RTSA implant and surgical decisions may affect muscle function


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 98 - 98
1 Dec 2013
Kavanaugh A Schmalzried T Billi F
Full Access

Questions/purposes:. What factors influence tibial tray-cement interface bond strength? We developed a laboratory model to investigate this issue with the goal of providing technical recommendations to mitigate the risk of tibial tray-cement loosening. Methods:. Forty-eight size 4 Triathlon® tibial trays were cemented into an acrylic holder using two different cements: Simplex® and Palacos®; three different cementing times: early (low viscosity), per manufacturer (normal, medium viscosity), and late (high viscosity); two different cementation techniques: cementing tibial plateau only and cementing tibial plateau and keel; and two different fat (marrow) contamination conditions: metal/cement interface and cement/cement interface. A push-out test was applied at a velocity of 0.05 mm/s, and the load recorded continuously throughout the test at a rate of 10 Hz. The test was stopped when the plate debonded from the cement (i.e. the tray visibly separated from the acrylic support and the load dropped substantially). Statistical analysis was performed using Welch's t-tests and Cohen's d tests. Results:. Compared to cementing under manufacturer-recommended conditions (normal), late cementing reduced the interface strength of Simplex™ by 47%. Early cementing increased interface strength of Simplex by 48% and Palacos by 139%. Cementing the keel increased the bond strength of Simplex™ 153% and Palacos™ 243% and over the respective normal cementing of the plateau only. Fat contamination of the metal-cement interface reduced the interface strength to practically zero (−99% Simplex and −91% Palacos), but by adding cement to the underside of the tibial tray prior to an insertion resulting in fat contamination, this was reduced to −65% in Simplex (the difference in strength between normal and fat contamination with the underside cemented was not statistically significant in Palacos). Conclusions:. Under laboratory conditions, a clean tibial tray-cement interface is strong, but much stronger when the keel is cemented. Earlier application of the cement to metal increases bond strength while later application reduces bond strength. Fat contamination of the tibial tray-cement interface reduces bond strength, but application of cement to the underside of the tibial tray prior to insertion substantially mitigates this. Clinical relevance: To maximize tibial tray-cement bond strength, 1) apply cement to the component soon after mixing, 2) thoroughly dry the entire tibial interface (plateau and keel), and 3) cement the keel as well as the plateau. These results suggest that clinical loosening at the tibial tray-cement interface can result from too late application of cement to the tray, and/or interface contamination by marrow or other fluid (blood or saline). The surgeon should consider applying cement to the undersurface of the component soon after mixing (while tacky). Cement placed into the keel region may also reduce the potential for marrow or other fluid contamination of the interface


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 150 - 150
1 Feb 2020
Morlock M Dickinson E Sellenschloh K
Full Access

The disadvantage of removing a well-fixed femoral stem are multiple (operating time, risk of fracture, bone and blood loss, recovery time and post-op complications. Ceramic heads with titanium adapter sleeves (e.g. BIOLOX®OPTION, Ceramtec) are a possibility for putting a new ceramic head on slightly damaged used tapers. ‘Intolerable’ taper damages even for this solution are qualitatively specified by the manufacturers. The aim of this study was to determine the fracture strength of ceramic heads with adapter sleeves on stem tapers with such defined damage patterns. Pristine stem tapers (Ti-6Al-4V, 12/14) were damaged to represent the four major stem taper damage patterns specified by the manufacturers: . -. ‘Truncated’: Removal of 12.5% of the circumference along the entire length of the stem taper at a uniform depth of 0.5mm parallel to the taper slope. -. ‘Slanted’: Removal of 33.3% of the proximal diameter perimeter with decreasing damage down to 3.7mm from the proximal taper end. -. ‘Cut’: Removal of the proximal 25% (4mm) of the stem taper. -. ‘Scratched’: Stem tapers from a previous ceramic fracture test study with a variety of scratches and crushing around the upper taper edge from multiple ceramic head fractures. -. The ‘Control’ group consisted of three pristine tapers left undamaged. BIOLOX®OPTION heads (Ø 32mm, length M) with Ti adapter sleeves were assembled to the damaged stem tapers and subjected to ISO7206-10 ultimate compression strength testing. The forces required to fracture the head were high and caused complete destruction of the ceramic heads in all cases. The ‘Truncated’ group showed the lowest values (136kN ± 4.37kN; Fig. 3). Forces were higher and similar for the ‘Cut’ (170kN ± 8.89kN), ‘Control’ (171.8 ± 16.5kN) and ‘Slanted’ (173kN ± 21.9kN) groups, the ‘Scratched’ group showed slightly higher values (193kN ± 11.9kN). The Ti adapter sleeves were plastically deformed but did not fail catastrophically. The present study suggests that manufacturer's recommendations for removal of a well fixed femoral stem could be narrowed down to the ‘Truncated’ condition. Even this might not be necessary since the fracture load is still substantially higher than the ASTM standard requires. Surgeons should consider to keep stems with larger taper damages as previously thought and spare the patient from stem revision. The greatest reservation regarding adapter sleeves is the introduction of the new metal-on-metal interface between stem and sleeve, which could possibly facilitate fretting-corrosion, which is presently one of the major concerns for modular junctions (3). Clinically such problems have not been reported yet. Ongoing FE-simulations are performed to investigate whether micromotions between stem and head taper are altered by the investigated damages


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 63 - 63
1 Jan 2016
Tanavalee A Hongvilai S Ngarmukos S Mekrungcharas N Prateeptongkum P Wangroongsub Y
Full Access

Background. Most of contemporary total knee systems address on improving of range of motion and bearing materials. Although new total knee designs in most systems accommodated the knee morphology according to gender differences, reestablishing of the same anterior offset of the distal femur during total knee arthroplasty (TKA) has not been well addressed. Furthermore, in most total knee systems, the anterior offset of the femoral component is constant regardless of the increment of the femoral size. We hypothesized that change of the anterior offset of the distal femur during TKA might affect the quadriceps strength and immediate clinical outcomes which may result in improved design of the future femoral component. Purpose. To evaluate the peak quadriceps strength and immediate clinical outcomes related to the change of anterior offset of the distal femur during TKA. Materials & Methods. We prospectively evaluated 75 patients (75 knees) who had primary osteoarthritis and underwent an uncomplicated TKA. A measured-resection technique of surgery using a single design of semi-constrained posterior-stabilized prosthesis with patellar resurfacing was used in all knees. In every TKA, the patellar resection was quantified in order to provide a similar thickness of the patellar composite to the original patellar thickness. A uniform perioperative protocol was applied. The mean thickness from the medial and lateral sides of the resected anterior femur were evaluated and compared with the mean thickness of the anterior part of the femoral component. The peak quadriceps strength and peak hip flexor strength was evaluated before surgery, and then at 2 weeks, 6 weeks and 3 months, postoperatively, using a digital dynamometer. The Difference of thickness between the resected anterior femoral bone and the anterior femoral component was defined as the change of the anterior offset of the distal femur. Clinical outcomes, including Knee Society Scores (KSS) and Western Ontario and McMaster University Arthritis Index (WOMAC) scores at 2 weeks, 6 weeks and 12 weeks were evaluated in relation of muscle strengths. Results. Patients were divided in 2 groups according to the change of the anterior offset of the distal femur during TKA. Thirty knees (group A) had similar or increased anterior offset of the distal femur and 45 knees (group B) had decreased anterior offset of the distal femur. The mean thickness of the resected anterior femoral bones in group A and B were 4.8 mm and 9.7 mm, respectively. The mean changes of anterior offset in group A and B were (+)0.7 mm and (−)4.2 mm with statistical difference (p, 0.01). There were no differences in patient's demographic data including age, sex, and body mass index (BMI). Preoperatively, both groups had similar mean peak quadriceps strength (108.04 N vs.115.52 N, p, 0.191) and mean peak hip flexor strength (105.98 N vs.108.05 N, p.0.745). At 2-week follow-up (FU), group A had significantly better peak quadriceps strength (111.53 N vs. 99.75 N, p, 0.03) and improve of total WOMAC score (32.4 points vs. 27.4 points, p, 0.03) than those of group B, The improved WOMAC score was statistical significant in subgroup of function (16.7 points vs. 12.7, p, 0.04) However, the peak hip flexor strength, KSS clinical scores and function scores were not different. At 6-week FU 12-week FU, there were no differences in all measuring parameters. Discussion and Conclusion. Biomechanical study has shown that the anterior offset of the distal femur provides role as a lever arm for a proper quadriceps function. Therefore, with maintaining of the patellar thickness during TKA in individual patient, a constant thickness of the anterior offset of the femoral component regardless of size may result in change of the anterior offset of the distal femur and may affect the function of quadriceps. The present study demonstrated that, at 2 weeks postoperatively, patients who had increased anterior offset of the distal femur could significantly gain better peak quadriceps strength and improved WOMAC function score than those who did not. In addition, change of anterior offset of the distal femur had no relation with the peak hip flexor strength. A mean 4.2-mm decreasing of anterior offset of the distal femur during TKA caused a shorter lever arm to the quadriceps and resulted in reducing the peak quadriceps strength with no gross effect on hip flexor strength. Although peak quadriceps strength in patients who had increased anterior offset of distal femur correlated with improved WOMAC function score, this marginal statistical significance provided a very short time for advantages. As there was a similar or slightly increased of anterior femoral offset in Group A, the anterior overstuff should be very minimal. At 6 weeks and 12 weeks after surgery, we found that investigated parameters, as well as clinical outcomes, were not different in both groups. We concluded that the change of femoral offset during TKA provided a short effect on quadriceps strength and clinical outcomes for few weeks which had no clinical impact on the drive to improve the prosthetic design of the femoral component which has a constant thickness of the anterior offset


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_III | Pages 34 - 34
1 Feb 2012
White C Bunker T Hooper R
Full Access

Given that there is limited time available to the surgeon in arthroscopic rotator cuff repair, how is the time best spent? Should they place one Modified Mason-Allen, two mattress or four simple sutures? This study reverses current thought. In an in-vitro biomechanical single pull to failure study we compared the ultimate tensile strength of simple, mattress and grasping sutures passed with an arthroscopic suture passer (Surgical Solutions Express-Sew). The aim was to determine which suture configurations would most simply, repeatably and reliably repair the rotator cuff. The ultimate tensile strength and mode of failure of six different suture configurations was repeatedly tested on a validated porcine rotator cuff tendon model, using a standard suture material (Number 2 Fiberwire) passed with the Surgical Solutions Express-sew, in a Hounsfield type H20K-W digital tensometer. Standardising the number of suture passes to four, the strongest construct was two mattress sutures (Mean 169N), followed by single Modified Kessler (Mean 161N), four simple sutures (Mean 155N) and finally a single Mason Allen suture (Mean 140N). Suture configurations involving two passes were all weaker than those with four (one way analysis of variance p=0.026), even when Number 2 Fibertape was used to augment strength. These results show little difference in strength for varying complexity of four pass suture passage (one way analysis of variance p=0.61). In simple terms there is no demonstrable difference in the strength of construct whether the surgeon uses four simple, two mattress or one grasping suture. This study allows the surgeon to justify using the simplest configuration of suture passage that works in his hands in order to obtain a reliable and repeatable repair of the rotator cuff arthroscopically


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 114 - 114
1 Apr 2019
Chaudhary M Muratoglu O Varadarajan KM
Full Access

INTRODUCTION. Ceramic heads are used in hip revision surgery to mitigate corrosion concerns. Manufacturers recommend using a pristine titanium sleeve in conjunction with a well-fixed metal stem to prevent early failure of the ceramic head. However, the influence of impact force, head size, and sleeve offset on pull-off strength and seating displacement of a revision head assembly is not fully understood. Therefore, the purpose of this study was to investigate the pull-off strength and displacement of commercially available revision ceramic heads and titanium taper sleeve offsets (BIOLOX OPTION, CeramTec GmbH, Plochingen, Germany) while covering a range of clinically relevant impaction forces. METHODS. Two head sizes (28 mm, n = 12 and 36 mm, n = 12) and two taper adapter sleeve offsets (small, n = 12 and extra-large, n =12) were tested in this study. A dynamic impaction rig was constructed to seat the head, sleeve, and stem assembly. Consistent impaction forces were achieved by a dropping a hammer fixed to a lever arm from a pre-determined height onto a standard impactor instrumented with a piezoelectric force sensor (PCB Piezotronics Inc.). Axially applied forces of 2 kN and 6 kN were used to cover a range of typical impaction forces. Three non-contact differential variable reluctance transducers (LORD Sensing Systems) were used to track the displacement of the head relative to the stem. Subsequently, samples were transferred a servo hydraulic testing machine, and a pull-off test was carried out per ISO 7206- 10 to measure the disassembly force. RESULTS. For all head and sleeve combinations assembled at 6 kN, pull-off forces and assembly displacements were over two times the values measured at 2 kN. As expected, an increased assembly force resulted in increased pull-offs and displacements. Head size did not play a significant role on measured outcomes. Regarding sleeve offsets, at assembly of 6 kN mean pull-off forces for extra-large sleeves were reduced by approximately 25% relative to small sleeves. However, at a 2 kN assembly, sleeve offsets did not appear to influence pull-off forces. DISCUSSION. This study assessed the effect of impact assembly force, head size, and sleeve offset on pull-off strength and seating displacement of revision ceramic heads. The data suggests assembly force and sleeve offset may influence the pull-off strength and seating displacement of modular heads used in revision hip arthroplasty. Mean pull-off forces for revision heads were comparable in magnitude and trend to previous studies assessing the linear relationship between assembly force and pull-off force in primary heads (Krull et al., 2017, Rehmer et al., 2012). Lower pull-off forces were observed for extra-large sleeves when compared to small sleeves, indicating, decreased contact at the sleeve and stem interface for extra-large offsets may play a role in reducing pull-off forces


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 1 - 1
1 Sep 2012
Boyd SK Schnackenburg KE Macdonald H Ferber R Wiley P
Full Access

Purpose. Stress fractures (SFs) are highly prevalent in female athletes, especially runners (1337%), and result in pain and lost training time. There are numerous risk factors for SFs in athletes; however, the role of bone quality in the etiology of SFs is currently unknown. Therefore, our primary objective was to examine whether there are characteristic differences in bone quality and bone strength in female athletes with lower limb SFs using high-resolution peripheral quantitative computed tomography (HR-pQCT). A secondary objective was to compare muscle strength between SF subjects and controls. Method. Female athletes with (n=19) and without (n=19) lower limb SFs were recruited from the local community. All SFs were medically confirmed by a physician and subjects were assessed within 1–47 weeks (12.7 13.7) of diagnosis. Controls were age-, training volume- and sport-matched to SF athletes. Bone density and microarchitectural bone parameters such as cortical thickness and porosity, as well as trabecular thickness, separation and number of all subjects were assessed using HR-pQCT at two distal tibia scanning sites (distal, ultra-distal). Finite element (FE) analysis was employed to estimate bone strength and load sharing of cortical and trabecular bone from the HR-pQCT scans. Regional analysis was applied to the HR-pQCT scans to investigate site-specific bone differences between groups. Muscle torque was measured by a Biodex dynamometer as a surrogate of muscle strength. Independent sample t-tests and Mann-Whitney U-tests were used for statistical analyses (p < 0.05). Results. Significant differences and trends indicated compromised trabecular bone and slightly thicker cortices with fewer pores in SF subjects compared with controls. This was most pronounced in the posterior region of the distal tibia, which is the site of highest tensile stresses during running and a common SF site. FE analysis indicated significantly higher cortical loads (median 4.2% higher; p=0.03) in the distal tibia site (but not ultra-distal site) of SF subjects compared to controls. The SF group exhibited significantly reduced knee extension strength (median 18.3% lower; p=0.03) and a trend towards reduced plantarflexion (median 17.3% lower; p=0.24) and eversion strength (median 9.6% lower; p=0.49) compared to controls. Conclusion. This is the first study to compare bone microarchitectural quality and lower-limb muscle strength between female athletes with SFs and health controls. A reduced trabecular bone quality in SF subjects may result in an insufficient ability to absorb and distribute tibial loads. This, in turn, may lead to higher stresses in the cortex and a higher risk for SFs. Low muscle strength may increase SF risk by providing insufficient muscular support to counteract shear stresses associated with reaction forces during running. Further study is needed to determine whether a resistance-training program can improve bone quality and in turn, reduce SF risk