Advertisement for orthosearch.org.uk
Results 1 - 20 of 28
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 179 - 179
1 May 2012
Fok A Cheng J Luk K
Full Access

The purpose of this study is to investigate the incidence of patients with isolated bundle ACL tear (either isolated posterolateral or anteromedial bundle) during arthroscopy, and its correlation with physical exam. The relevant surgical technique to reconstruct the ligament is discussed.

Between September 2006 and March 2009, patients with ACL injuries who received double- bundle ACL reconstruction were reviewed retrospectively. A specialist fellow performed a physical exam before and after anaesthesia. Intraop status of the ACL tear was assessed with correlation of the physical findings. Patients with isolated bundle tear would receive anatomical reconstruction of the torn bundle with preservation of the intact bundle.

Double-bundle hamstrings reconstruction would be performed to those with complete tear. Medical notes of 159 patients were reviewed. There were 118 patients (74%) with complete ACL tear, 36 (23%) with isolated AM tear, and 5 (3%) with PL tear.

For patients with complete ACL tear, 94% and 100% had positive Lachman, 50% and 87% had positive pivot shift, before and after anaesthesia. For patients with isolated AM tear, 100% had positive Lachman, 36% and 19% had positive pivot shift, before and after anaesthesia.

For patients with isolated PL tear, 100% had positive Lachman, 20% and 80% had positive pivot shift, before and after anaesthesia.

With better understanding of ACL, patients with isolated-bundle tear can preserve their intact bundle during reconstruction. However, in this study we find that physical exam correlates poorly with the arthroscopic findings.

Further imaging (e.g. MRI) may be helpful to differentiate patients from isolated- bundle tear to complete tear.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_29 | Pages 6 - 6
1 Aug 2013
Hohmann E Bryant A Tetsworth K
Full Access

Background:

The aim of this study was to investigate the outcome after ACL reconstruction between a group of patients receiving a standardized supervised physiotherapy guided rehabilitation program and a group of patients who followed an un-supervised, home-based rehabilitation program.

Methods:

40 patients with isolated anterior cruciate ligament injuries were allocated to either a supervised physiotherapy intervention group or home-based exercise group. Patients were investigated by an independent examiner pre-operative, 3, 6, 9 and 12 months post-surgery using the following outcome measures: Lysholm Score and Tegner Activity Scale, functional hopping tests, isometric and isokinetic strength assessments.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_19 | Pages 30 - 30
1 Apr 2013
Morar Y Ahmed M Hardwick T Kavarthapu V Edmonds M Bates M Jemmott T Doxford M Pendry E Tang W Morris V Tremlett J
Full Access

Introduction

Hind foot Charcot deformity is a disastrous complication of diabetic neuropathy and can lead to instability, ulceration and major amputation. The treatment of these patients is controversial. Internal stabilization and/or external fixation have demonstrated variable results of limb salvage and some authorities thus advise patients to undergo elective major amputation. However, we report a series of 9 diabetic patients with severe hind foot deformity complicated by ulceration in 5/9, who underwent acute corrective internal fixation with successful correction of deformity, healing of ulceration in 4/5 patients and limb salvage in all cases.

Methods

We treated 9 diabetic patients attending a multidisciplinary diabetic/orthopaedic foot clinic with progressive severe Charcot hind foot deformity despite treatment with total contact casting, 5 with predominant varus deformity and 2 with valgus deformity and 2 with unstable ankle joints. Five patients had developed secondary ulceration. All patients underwent corrective hind foot fusion with tibiotalo-calcaneal arthrodesis using a retrograde intra-medullary nail fixation and screws and bone grafting. One patient also with fixed plano-valgus deformity of the foot underwent a corrective mid-foot reconstruction.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 61 - 61
1 Sep 2012
Ahmed M Morar Y Edmonds M Kavarthapu V
Full Access

Hind foot Charcot deformity is a disastrous complication of diabetic neuropathy and can lead to instability, ulceration and amputation. The treatment of these patients is controversial. Internal stabilisation and external fixation have demonstrated variable results of limb salvage and some authorities thus advise patients to undergo elective amputation. We report a series of 9 diabetic patients with severe hind foot deformity complicated by ulceration in 5/9, who underwent acute corrective internal fixation with successful correction of deformity, healing of ulceration in 4/5 patients and limb salvage in all cases.

Conservative measures such as total contact casting were tried in 5 patients had predominant varus deformity, 2 with valgus deformity and 2 with unstable ankle joints. 5 patients had developed secondary ulceration.

All patients underwent corrective hind foot fusion with tibio-talo-calcaneal arthrodesis using a retrograde intramedullary nail fixation and screws and bone grafting. One patient also with fixed planovalgus deformity of the foot underwent a corrective midfoot reconstruction.

Patients were followed up in a diabetic/orthopaedic multidisciplinary foot clinic and were treated with total contact casting. (Mean follow up time was 15.6 ±6.9months) In all patients the deformity was corrected with successful realignment to achieve a plantigrade foot. Healing of the secondary ulcers was achieved in 4/5 cases and limb salvage was achieved in all cases.

Three patients underwent further surgical procedure to promote bone fusion. One patient required removal of a significantly displaced fixation screw. Two patients had postoperative wound infections which that were treated with initially intravenous antibiotic therapy and then negative pressure wound therapy.

In conclusion, internal fixation for severe hind foot deformity together with close follow up in a multidisciplinary diabetic/orthopaedic foot clinic can be successful in diabetic patients with advanced Charcot osteoarthropathy and secondary ulceration.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 57 - 57
1 Dec 2022
Champagne A McGuire A Shearer K Brien D Martineau PA Bardana DD
Full Access

Reconstruction of the anterior cruciate ligament (ACL) allows to restore stability of the knee, in order to facilitate the return to activity (RTA). Although it is understood that the tendon autograft undergoes a ligamentous transformation postoperatively, knowledge about longitudinal microstructural differences in tissue integrity between types of tendon autografts (ie, hamstring vs. patella) remains limited. Diffusion tensor imaging (DTI) has emerged as an objective biomarker to characterize the ligamentization process of the tendon autograft following surgical reconstruction. One major limitation to its use is the need for a pre-injury baseline MRI to compare recovery of the graft, and inform RTA. Here, we explore the relationship for DTI biomarkers (fractional anisotropy, FA) between knees bilaterally, in healthy participants, with the hypothesis that agreement within a patient's knees may support the use of the contralateral knee as a reference to monitor recovery of the tendon autograft, and inform RTA. Fifteen participants with no previous history of knee injuries were enrolled in this study (age, 26.7 +/− 4.4 years; M/F, 7/8). All images were acquired on a 3T Prisma Siemens scanner using a secured flexible 18-channel coil wrapped around the knee. Both knees were scanned. A 3D anatomical Double Echo Steady State (DESS) sequence was acquired on which regions of interest (ROI) were placed consistent with the footprints of the ACL (femur, posteromedial corner on medial aspect of lateral condyle; tibia, anteromedial to intercondylar eminence). Diffusion images were acquired using fat saturation based on optimized parameters in-house. All diffusion images were pre-processed using the FMRIB FSL toolbox. The footprint ROIs of the ACL were then used to reconstruct the ligament in each patient with fiber-based probabilistic tractography (FBPT), providing a semi-automated approach for segmentation. Average FA was computed for each subject, in both knees, and then correlated against one another using a Pearson correlation to assess the degree of similarity between the ACLs. A total of 30 datasets were collected for this study (1/knee/participant; N=15). The group averaged FA (+/− standard deviation) for the FBPT segmented ACLs were found to equal 0.1683 +/− 0.0235 (dominant leg) and 0.1666 +/− 0.0225 (non-dominant leg). When comparing both knees within subjects, reliable agreement was found for the FBPT-derived ACL with a linear correlation coefficient (rho) equal to 0.87 (P < 0 .001). We sought to assess the degree of concordance in FA between the knees of healthy participants with hopes to provide a method for using the contralateral “healthy” knee in the comparison of autograft-dependent longitudinal changes in microstructural integrity, following ACL reconstruction. Our results suggest that good agreement in anisotropy can be achieved between the non-dominant and dominant knees using DTI and the FBPT segmentation method. Contralateral anisotropy of the ACL, assuming no previous injuries, may be used as a quantitative reference biomarker for monitoring the recovery of the tendon autograft following surgical reconstruction, and gather further insight as to potential differences between chosen autografts. Clinically, this may also serve as an index to supplement decision-making with respect to RTA, and reduce rates of re-injuries


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_3 | Pages 5 - 5
23 Jan 2024
Awad F Khan F McIntyre J Hathaway L Guro R Kotwal R Chandratreya A
Full Access

Introduction. Anterior cruciate ligament (ACL) injuries represent a significant burden of disease to the orthopaedic surgeon and often necessitate surgical reconstruction in the presence of instability. The hamstring graft has traditionally been used to reconstruct the ACL but the quadriceps tendon (QT) graft has gained popularity due to its relatively low donor site morbidity. Methods. This is a single centre comparative retrospective analysis of prospectively collected data of patients who had an ACL reconstruction (either with single tendon quadrupled hamstring graft or soft tissue quadriceps tendon graft). All surgeries were performed by a single surgeon using the All-inside technique. For this study, there were 20 patients in each group. All patients received the same post-operative rehabilitation protocol and were added to the National Ligament Registry to monitor their patient related outcome scores (PROM). Results. The average age of patients in the QT group was 29 years (16 males, 4 females) and in the hamstring group was 28 years (18 males, 2 females). The most common mechanism of injury in both groups was a contact twisting injury. There were no statistical differences between the two patient groups in regards to PROMS and need for further revision surgery as analysed on the National Ligament Registry. Conclusions. The all soft tissue QT graft seems to be equivocal to quadrupled hamstring graft in terms of patient function and recovery graft characteristics. Further research may be needed to elucidate the long-term results of the all soft tissue QT graft given its recent increase in use


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 74 - 74
1 Dec 2022
Hoit G Khan R Chahal J Whelan DB
Full Access

Multiligament knee injuries (MLKI) are rare and life-altering injuries that remain difficult to treat clinically due to a paucity of evidence guiding surgical management and timing. The purpose of this study was to compare injury specific functional outcomes following early versus delayed surgical reconstruction in MLKI patients to help inform timing decisions in clinical practice. A retrospective analysis of prospectively collected data from patients with MLKIs at a single academic level 1-trauma center was conducted. Patients were eligible for inclusion if they had an MLKI, underwent reconstructive surgery either prior to 6wks from injury or between 12weeks and 2 years from injury, and had at least 12months of post-surgical follow-up. Patients with a vascular injury, open injuries or associated fractures were excluded. Study participants were stratified into early (12 weeks - 2 years from injury). The primary outcome was patient reported, injury specific, quality of life in the form of the Multiligament Quality of Life questionnaire (MLQOL) and its four domains (Physical Impairment, Emotional Impairment, Activity Limitations and Societal Involvement). We secondarily analyzed differences in the need for manipulation under anesthesia, and reoperation rates, as well as radiographic Kellgren Lawrence (KL) arthritis grades, knee laxity grading and range of motion at the most recent follow-up. A total of 131 patients met our inclusion criteria, all having had surgery between 2006 and 2019. There were 75 patients in the early group and 56 in the delayed group. The mean time to surgery was 17.6 ± 8.0 days in the early group versus 279 ± 146.5 days in the delayed. Mean postoperative follow-up was 58 months. There were no significant differences between early and delayed groups with respect to age (34 vs. 32.8 years), sex (77% vs 63% male), BMI (28.3 vs 29.7 kg/m2), or injury mechanism (p>0.05). The early surgery group was found to include more patients with lateral sided injuries (n=49 [65%] vs. n=23 [41%]; p=0.012), a higher severity of Schenck Classification (p=0.024) as well as nerve injuries at initial presentation (n=35 [49%] vs n=8 [18%]; p0.05), when controlling for age, sex, Schenck classification, medial versus lateral injury, and nerve injury status. In terms of our secondary outcomes, we found that the early group underwent significantly more manipulations under anesthesia compare with the delayed group (n=24, [32%] vs n=8 [14%], p=0.024). We did not identify a significant difference in physical examination laxity grades, range of motion, KL grade or reoperation rates between groups (p>0.05). We found no difference in patient reported outcomes between those who underwent early versus delayed surgery following MLKI reconstruction. In our secondary outcomes, we found significantly more patients in the early surgery group required a manipulation under anesthesia following surgery, which may indicate a propensity for arthrofibrosis after early MLKI reconstruction


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 16 - 16
1 Dec 2022
Hornestam JF Abraham A Girard C Del Bel M Romanchuk N Carsen S Benoit D
Full Access

Background: Anterior cruciate ligament (ACL) injury and re-injury rates are high and continue to rise in adolescents. After surgical reconstruction, less than 50% of patients return to their pre-injury level of physical activity. Clearance for return-to-play and rehabilitation progression typically requires assessment of performance during functional tests. Pain may impact this performance. However, the patient's level of pain is often overlooked during these assessments. Purpose: To investigate the level of pain during functional tests in adolescents with ACL injury. Fifty-nine adolescents with ACL injury (ACLi; female n=43; 15 ± 1 yrs; 167.6 ± 8.4 cm; 67.8 ± 19.9 kg) and sixty-nine uninjured (CON; female n=38; 14 ± 2 yrs; 165.0 ± 10.8 cm; 54.2 ± 11.5 kg) performed a series of functional tests. These tests included: maximum voluntary isometric contraction (MVIC) and isokinetic knee flexion-extension strength tests, single-limb hop tests, double-limb squats, countermovement jumps (CMJ), lunges, drop-vertical jumps (DVJ), and side-cuts. Pain was reported on a 5-point Likert scale, with 1 indicating no pain and 5 indicating extreme pain for the injured limb of the ACLi group and non-dominant limb for the CON group, after completion of each test. Chi-Square test was used to compare groups for the level of pain in each test. Analysis of the level of pain within and between groups was performed using descriptive statistics. The distribution of the level of pain was different between groups for all functional tests (p≤0.008), except for ankle plantar flexion and hip abduction MVICs (Table 1). The percentage of participants reporting pain was higher in the ACLi group in all tests compared to the CON group (Figure 1). Participants most often reported pain during the strength tests involving the knee joint, followed by the hop tests and dynamic tasks, respectively. More specifically, the knee extension MVIC was the test most frequently reported as painful (70% of the ACLi group), followed by the isokinetic knee flexion-extension test, with 65% of ACLi group. In addition, among all hop tests, pain was most often reported during the timed 6m hop (53% of ACLi), and, among all dynamic tasks, during the side-cut (40% of ACLi) test (Figure 1). Furthermore, the tests that led to the higher levels of pain (severe or extreme) were the cross-hop (9.8% of ACLi), CMJ (7.1% of ACLi), and the isokinetic knee flexion-extension test (11.5% of ACLi) (Table 1). Adolescents with and without ACL injury reported different levels of pain for all functional tasks, except for ankle and hip MVICs. The isokinetic knee flexion-extension test resulted in greater rates of severe or extreme pain and was also the test most frequently reported as painful. Functional tests that frequently cause pain or severe level of pain (e.g., timed 6m and cross hops, side-cut, knee flexion/extension MVICs and isokinetic tests) might not be the first test choices to assess function in patients after ACL injury/reconstruction. Reported pain during functional tests should be considered by clinicians and rehabilitation team members when evaluating a patient's readiness to return-to-play. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 3 - 3
1 Dec 2022
Hoit G Khan R Chahal J Whelan D
Full Access

Multiligament knee injuries (MLKI) are rare and life-altering injuries that remain difficult to treat clinically due to a paucity of evidence guiding surgical management and timing. The purpose of this study was to compare injury specific functional outcomes following early versus delayed surgical reconstruction in MLKI patients to help inform timing decisions in clinical practice. A retrospective analysis of prospectively collected data from patients with MLKIs at a single academic level 1-trauma center was conducted. Patients were eligible for inclusion if they had an MLKI, underwent reconstructive surgery either prior to 6wks from injury or between 12weeks and 2 years from injury, and had at least 12months of post-surgical follow-up. Patients with a vascular injury, open injuries or associated fractures were excluded. Study participants were stratified into early (<6wks from injury) and delayed surgical intervention (>12 weeks – 2 years from injury). The primary outcome was patient reported, injury specific, quality of life in the form of the Multiligament Quality of Life questionnaire (MLQOL) and its four domains (Physical Impairment, Emotional Impairment, Activity Limitations and Societal Involvement). We secondarily analyzed differences in the need for manipulation under anesthesia, and reoperation rates, as well as radiographic Kellgren Lawrence (KL) arthritis grades, knee laxity grading and range of motion at the most recent follow-up. A total of 131 patients met our inclusion criteria, all having had surgery between 2006 and 2019. There were 75 patients in the early group and 56 in the delayed group. The mean time to surgery was 17.6 ± 8.0 days in the early group versus 279 ± 146.5 days in the delayed. Mean postoperative follow-up was 58 months. There were no significant differences between early and delayed groups with respect to age (34 vs. 32.8 years), sex (77% vs 63% male), BMI (28.3 vs 29.7 kg/m. 2. ), or injury mechanism (p>0.05). The early surgery group was found to include more patients with lateral sided injuries (n=49 [65%] vs. n=23 [41%]; p=0.012), a higher severity of Schenck Classification (p=0.024) as well as nerve injuries at initial presentation (n=35 [49%] vs n=8 [18%]; p<0.001). Multivariable linear regression analyses of the four domains of the MLQOL did not demonstrate an independent association with early versus delayed surgery status (p>0.05), when controlling for age, sex, Schenck classification, medial versus lateral injury, and nerve injury status. In terms of our secondary outcomes, we found that the early group underwent significantly more manipulations under anesthesia compare with the delayed group (n=24, [32%] vs n=8 [14%], p=0.024). We did not identify a significant difference in physical examination laxity grades, range of motion, KL grade or reoperation rates between groups (p>0.05). We found no difference in patient reported outcomes between those who underwent early versus delayed surgery following MLKI reconstruction. In our secondary outcomes, we found significantly more patients in the early surgery group required a manipulation under anesthesia following surgery, which may indicate a propensity for arthrofibrosis after early MLKI reconstruction


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_15 | Pages 53 - 53
1 Dec 2021
Osinga R Eggimann M Lo S Kühl R Lunger A Ochsner PE Sendi P Clauss M Schaefer D
Full Access

Aim. Reconstruction of composite soft-tissue defects with extensor apparatus deficiency in patients with periprosthetic joint infection (PJI) of the knee is challenging. We present a single-centre multidisciplinary orthoplastic treatment concept based on a retrospective outcome analysis over 20 years. Method. One-hundred sixty-seven patients had PJI after total knee arthroplasty. Plastic surgical reconstruction of a concomitant perigenicular soft-tissue defect was indicated in 49 patients. Of these, seven presented with extensor apparatus deficiency. Results. One patient underwent primary arthrodesis and six patients underwent autologous reconstruction of the extensor apparatus. The principle to reconstruct missing tissue ‘like with like’ was thereby favoured: Two patients with a wide soft-tissue defect received a free anterolateral thigh flap with fascia lata; one patient with a smaller soft-tissue defect received a free sensate, extended lateral arm flap with triceps tendon; and three patients received a pedicled medial sural artery perforator gastrocnemius flap, of which one with Achilles tendon. Despite good functional results 1 year later, long-term follow-up revealed that two patients had to undergo knee arthrodesis because of recurrent infection and one patient was lost to follow-up. In parts, results have been published under doi: 10.7150/jbji.47018. Conclusions. A treatment concept and its rationale, based on a single-centre experience, is presented. It differentiates between various types of soft-tissue defects and shows reconstructive options following the concept to reconstruct ‘like with like’. Despite good results 1 year postoperatively, PJI of the knee with extensor apparatus deficiency remains a dreaded combination with a poor long-term outcome


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_13 | Pages 4 - 4
1 Nov 2019
Aujla RS Hansom D Rooney A Wheelton A Wilding C Barwell J Spacey K McMullan M Shaw C Hashim Z Akhtar MA Godsiff S
Full Access

Knee dislocations are a rare but serious cause of trauma. The aim of this study was to establish current demographics and injury patterns/associations in multi-ligament (MLI) knee injuries in the United Kingdom. A National survey was sent out to trauma & orthopaedic trainees using the British Orthopaedic Trainees Association sources in 2018. Contributors were asked to retrospectively collect a data for a minimum of 5 cases of knee dislocation, or multi-ligament knee injury, between January 2014 and December 2016. Data was collected regarding injury patterns and surgical reconstructions. 73 cases were available for analysis across 11 acute care NHS Trusts. 77% were male. Mean age was 31.9 (SD 12.4; range 16–69). Mean Body Mass Index (BMI) was 28.3 (SD 7.0; range 19–52). Early (<3 weeks) reconstruction was performed in 53% with 9 (23%) patients under-going procedures for arthrofibrosis. Late (>12 weeks) reconstruction took place in 37% with one (3.7%) patient under-going arthroscopic arthrolysis. 4% had delayed surgery (3–12 weeks) and 5% had early intervention with delayed ACL reconstruction. For injuries involving 3 or more ligament injuries graft choices were ipsilateral hamstring (38%), bone-patella tendon-bone (20%), allograft (20%), contralateral hamstring (17%) and synthetic grafts in 18%. Multi-ligament knee injuries are increasingly being managed early with definitive reconstructions. This is despite significant risk of arthrofibrosis with early surgery. Ipsilateral and contralateral hamstring grafts make up the bulk of graft choice however allograft (20%) and synthetic grafts (18%) remain popular


Bone & Joint Open
Vol. 4, Issue 4 | Pages 250 - 261
7 Apr 2023
Sharma VJ Adegoke JA Afara IO Stok K Poon E Gordon CL Wood BR Raman J

Aims

Disorders of bone integrity carry a high global disease burden, frequently requiring intervention, but there is a paucity of methods capable of noninvasive real-time assessment. Here we show that miniaturized handheld near-infrared spectroscopy (NIRS) scans, operated via a smartphone, can assess structural human bone properties in under three seconds.

Methods

A hand-held NIR spectrometer was used to scan bone samples from 20 patients and predict: bone volume fraction (BV/TV); and trabecular (Tb) and cortical (Ct) thickness (Th), porosity (Po), and spacing (Sp).


Bone & Joint Open
Vol. 4, Issue 3 | Pages 146 - 157
7 Mar 2023
Camilleri-Brennan J James S McDaid C Adamson J Jones K O'Carroll G Akhter Z Eltayeb M Sharma H

Aims

Chronic osteomyelitis (COM) of the lower limb in adults can be surgically managed by either limb reconstruction or amputation. This scoping review aims to map the outcomes used in studies surgically managing COM in order to aid future development of a core outcome set.

Methods

A total of 11 databases were searched. A subset of studies published between 1 October 2020 and 1 January 2011 from a larger review mapping research on limb reconstruction and limb amputation for the management of lower limb COM were eligible. All outcomes were extracted and recorded verbatim. Outcomes were grouped and categorized as per the revised Williamson and Clarke taxonomy.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_7 | Pages 8 - 8
1 May 2018
Hemingway R Birley D Hales R Wood A
Full Access

Ankle ligament injury is a common cause of injury to military recruits, and frequently implicated in failure to complete Royal Marines (RM) recruit training. A minority of patients at Commando Training Centre Royal Marines (CTCRM) with ankle ligament injury undergo arthroscopic ankle stabilisation surgery (Bostrum or Evans procedures). The decision to undertake surgery involves an assessment of functional benefit to the patient, medical and surgical risks, and cost-effectiveness. However, there is currently little data on the efficacy of surgery in enabling recruits to complete RM training. To assess the number of RM recruits who completed recruit training following ankle stabilisation surgery and entered the trained strength. A retrospective analysis of all patients at CTCRM who underwent surgery for ankle stabilisation was performed using healthcare records data. The primary outcome measure was completion of RM recruit training after surgery. 27 patients underwent surgical intervention for ankle instability between 2004 and 2015. Patients remaining in rehabilitation following their surgery were excluded, leaving 22 patients suitable for inclusion in the final analysis. Of the eligible patients undergoing surgical intervention (n = 22), six patients – 27% – completed RM recruit training. Average time in rehabilitation 68 weeks. 10 patients underwent a Evans procedure and 9 underwent a brostum repair with 3 unknown. Based on cumulative data spanning 11 years at CTCRM, operative intervention for ankle instability enables only a minority (27%) of patients to complete RM recruit training. Patients who undergo surgical intervention also undertake prolonged rehabilitation at a cost of £1850 per recruit per week. The poor rates of completing RM training following surgery, and the high costs of rehabilitation, have implications with regards to retaining recruits who sustain ankle injuries requiring surgical reconstruction


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_7 | Pages 101 - 101
1 Apr 2017
Engh C
Full Access

Extensor mechanism complications after or during total knee arthroplasty are problematic. The prevalence ranges from 1–12% in TKR patients. Treatment results for these problems are inferior to the results of similar problems in non-TKR patients. Furthermore, the treatment algorithm is fundamentally different from that of non-TKR patients. The surgeon's first question does not focus on primary fixation; rather the surgeon must ask if the patient needs surgery and if so am I prepared to augment the repair? Quadriceps tendon rupture, periprosthetic patellar fracture, and patellar tendon rupture have similar treatment algorithms. Patients who are able to perform a straight leg raise and have less than a 20-degree extensor lag are generally treated non-operatively with extension bracing. The remaining patients will need surgical reconstruction of the extensor mechanism. Loose patellar components are removed. Primary repair alone is associated with poor results. Whole extensor mechanism allograft, Achilles tendon allograft, and synthetic mesh reconstruction are the current techniques for augmentation. In the acute setting if these are not available hamstring tendon harvest and augmentation is an option. Achilles tendons and synthetic mesh are easier to obtain than and entire extensor mechanism but are limited to patients that have an intact patella and the patella that can be mobilised to within 2–3 cm of the joint line. No matter which technique is used the principles are: rigid distal/tubercle fixation, coverage of allograft/mesh with host tissue to decrease infection, tensioning the augment material in extension, no flexion testing of reconstruction and post-operative extension bracing


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 100 - 100
1 Mar 2017
Gabaran N Mirghasemi S Rashidinia S Sadeghi M Talebizadeh M
Full Access

Background. Surgical reconstruction of the anterior cruciate ligament is a common practice to treat the disability or chronic instability of the knee. Several factors associated with success or failure of the ACL reconstruction, including surgical technique and graft material and graft tension. We aimed to show how we can optimize the graft properties and achieve better post surgical outcomes during ACL reconstruction using 3-dimensional computational finite element simulation. Methods. In this paper, 3-dimensional model of the knee was constructed to investigate the effect of graft tensioning on the knee joint biomechanics. Four different grafts were compared: 1) bone-patellar tendon-bone graft (BPTB) 2) Hamstring tendon 3) BPTB and a band of gracilis 4) Hamstring and a band of gracilis. The initial graft tension was set as “0, 20, 40, or 60N”. The anterior loading was set to 134 N. Findings. Our study shows that the use of the discarded gracilis tendon, which usually excised after graft fixation, could be associated with a host of merits. Our results show that preserving this excess part of gracilis would decrease the required pretention load and, subsequently, could optimize biomechanical properties of the knee. Conclusion. Required pretension during surgery will have decreased significantly by adding a band of gracilis to the proper graft. Therefore, in addition to achieving normal stability of the knee, we can have lower risk of degradation


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_17 | Pages 66 - 66
1 Nov 2016
Engh C
Full Access

Extensor mechanism complications after or during total knee arthroplasty (TKA) are problematic. The prevalence ranges from 1%-12% in TKA patients. Treatment results for these problems are inferior to the results of similar problems in non-TKA patients. Furthermore, the treatment algorithm is fundamentally different from that of non-TKA patients. The surgeon's first question does not focus on primary fixation; rather the surgeon must ask if the patient needs surgery and if so am I prepared to augment the repair? Quadriceps tendon rupture, peri-prosthetic patellar fracture, and patellar tendon rupture have similar treatment algorithms. Patients who are able to perform a straight leg raise and have less than a 20-degree extensor lag are generally treated non-operatively with extension bracing. The remaining patients will need surgical reconstruction of the extensor mechanism. Loose patellar components are removed. Primary repair alone is associated with poor results. Whole extensor mechanism allograft, Achilles tendon allograft, and synthetic mesh reconstruction are the current techniques for augmentation. In the acute setting if these are not available, hamstring tendon harvest and augmentation is an option. Achilles tendons and synthetic mesh are easier to obtain than an entire extensor mechanism but are limited to patients that have an intact patella and the patella that can be mobilised to within 2–3 cm of the joint line. No matter which technique is used the principles are: rigid distal/tubercle fixation, coverage of allograft/mesh with host tissue to decrease infection, tensioning the augment material in extension, no flexion testing of reconstruction and post-operative extension bracing


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 94 - 94
1 Jul 2020
Badre A Axford D Banayan S Johnson J King GJ
Full Access

Previous biomechanical studies of lateral collateral ligament (LCL) injuries and their surgical repair, reconstruction and rehabilitation have primarily relied on gravity effects with the arm in the varus position. The application of torsional moments to the forearm manually in the laboratory is not reproducible, hence studies to date likely do not represent forces encountered clinically. The aim of this investigation was to develop a new biomechanical testing model to quantify posterolateral stability of the elbow using an in vitro elbow motion simulator. Six cadaveric upper extremities were mounted in an elbow motion simulator in the varus position. A threaded screw was then inserted on the dorsal aspect of the proximal ulna and a weight hanger was used to suspend 400g, 600g, and 800g of weight from the screw head to allow torsional moments to be applied to the ulna. An LCL injured (LCLI) model was created by sectioning of the common extensor origin, and the LCL. Ulnohumeral rotation was recorded using an electromagnetic tracking system during simulated active and passive elbow flexion with the forearm pronated and supinated. A repeated measures analysis of variance was performed to compare elbow states (intact, LCLI, and LCLI with 400g, 600g, and 800g of weight). During active motion, there was a significant difference between different elbow states (P=.001 pronation, P=.0001 supination). Post hoc analysis showed that the addition of weights did not significantly increase the external rotation (ER) of the ulnohumeral articulation (10°±7°, P=.268 400g, 10.5°±7.1°, P=.156 600g, 11°±7.2°, P=.111 800g) compared to the LCLI state (8.4°±6.4°) with the forearm pronated. However, with the forearm supinated, the addition of 800g of weight significantly increased the ER (9.2°±5.9°, P=.038) compared to the LCLI state (5.9°±5.5°) and the addition of 400g and 600g of weights approached significance (8.2°±5.7°, P=.083 400g, 8.7°±5.9°, P=.054 600g). During passive motion, there was a significant difference between different elbow states (P=.0001 pronation, P=.0001 supination). Post hoc analysis showed that the addition of 600g and 800g but not 400g resulted in a significant increase in ER of the ulnohumeral articulation (9.3°±7.8°, P=.103 400g, 11.2°±6.2°, P=.004 600g, 12.7°±6.8°, P=.006 800g) compared to the LCLI state (3.7°±5.4°) with the forearm pronated. With the forearm supinated, the addition of 400g, 600g, and 800g significantly increased the ER (11.7°±6.7°, P=.031 400g, 13.5°±6.8°, P=.019 600g, 14.9°±6.9°, P=.024 800g) compared to the LCLI state (4.3°±6.6°). This investigation confirms a novel biomechanical testing model for studying PLRI. Moreover, it demonstrates that the application of even small amounts of torsional moment on the forearm with the arm in the varus position exacerbates the rotational instability seen with the LCL deficient elbow. The effect of torsional loading was significantly worse with the forearm supinated and during passive elbow motion. This new model allows for a more provocative testing of elbow stability after LCL repair or reconstruction. Furthermore, this model will allow for smaller sample sizes to be used while still demonstrating clinically significant differences. Future biomechanical studies evaluating LCL injuries and their repair and rehabilitation should consider using this testing protocol


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_21 | Pages 41 - 41
1 Dec 2016
Mulpuri K Miller S Schaeffer E Juricic M Hesketh K
Full Access

Hip displacement is the second most common deformity in children with cerebral palsy (CP). A displaced, and particularly a dislocated hip, can have significantly adverse effects on an individual. Surgical intervention to correct progressive hip displacement or dislocation is recommended for children with CP. Success of surgical intervention is often described using radiological outcomes. There is evidence that surgical treatment for displaced or dislocated hips decreases pain and hip stiffness and improves radiological outcomes. However, there is no information in the literature regarding the impact of surgical treatment on the health related quality of life (HRQOL) in these children. The aim of our study was to examine the impact of surgical treatment of hip displacement or dislocation on HRQOL in children with CP. This prospective longitudinal cohort study involved children attending a tertiary care hospital orthopaedic department. Children with CP between the ages of 4 and 18 years, with hip displacement/dislocation, defined as a Reimer's migration percentage (MP) of >40% on a pre-operative x-ray, and undergoing surgical reconstruction were eligible for inclusion. Quality of life was measured pre-operatively and post-operatively using the CPCHILD Questionnaire. Twelve patients (one child was GMFCS level III, 4 were level IV, and 7 were level V), aged 4.0 to 17.3 years, were assessed pre-operatively and then again at least six months post-operatively. All underwent unilateral (5) or bilateral (7) reconstructive hip surgery. The migration percentage of hips undergoing reconstruction was reduced by an average of 52% (9–100%). The average change in CPCHILD score showed an increase of 6.4 points [95% CI: −1.4–14.2]. In this pilot study, no significant change was noted in HRQOL following reconstructive hip surgery, despite a marked reduction in Reimer's MP. However, only 4 of 12 parents reported that their child had daily pain pre-operatively. A larger sample size will be required to draw more accurate conclusions from these findings. There is an evident need for a multicentre study examining this issue in a larger patient population in order to determine the long-term impact of different hip interventions on quality of life in children with CP


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_21 | Pages 69 - 69
1 Dec 2016
Kopka M Rahnemani-Azar A Abebe E Labrum J Irrgang J Fu F Musahl V
Full Access

Knee laxity following anterior cruciate ligament (ACL) injury is a complex phenomenon influenced by various biomechanical and anatomical factors. The contribution of soft tissue injuries – such as ligaments, menisci, and capsule – has been previously defined, but less is known about the effects of bony morphology. (Tanaka et al, KSSTA 2012) The pivot shift test is frequently employed in the clinical setting to assess the combined rotational and translational laxity of the ACL deficient knee. In order to standardise the maneuver and allow for reproducible interpretation, the quantitative pivot shift test was developed. (Hoshino et al, KSSTA 2013) The aim of this study is to employ the quantitative pivot shift test to determine the effects of bone morphology as determined by magnetic resonance imaging (MRI) on rotatory laxity of the ACL deficient knee. Fifty-three ACL injured patients scheduled for surgical reconstruction (36 males and 17 females; 26±10 years) were prospectively enrolled in the study. Preoperative magnetic resonance imaging (MRI) scans were reviewed by two blinded observers and the following parameters were measured: medial and lateral tibial slope, tibial plateau width, femoral condyle width, bicondylar width, and notch width. (Musahl et al. KSSTA 2012). Preoperatively and under anaesthesia, a quantitative pivot shift test was performed on each patient by a single experienced examiner. An image analysis technique was used to quantify the lateral compartment translation during the maneuver. Subjects were classified as “high laxity” or “low laxity” based upon the median value of lateral compartment translation. (Hoshino et al. KSSTA 2012) Independent t-tests and univariate logistic regression were used to investigate the relationship between the pivot shift grade and various features of bone morphology. Statistical significance was set at p<0.05. A high inter-rater reliability was observed in all MRI measurements of bone morphology (ICC=0.72–0.88). The median lateral compartment translation during quantitative pivot shift testing was 2.8mm. Twenty-nine subjects were classified as “low laxity” (2.8mm). The lateral tibial plateau slope was significantly increased in “high laxity” patients (9.3+/−3.4mm versus 6.1+/−3.7mm; p<0.05). No other significant difference in bone morphology was observed between the groups. This study employed an objective assessment tool – the quantitative pivot shift test – to assess the contribution of various features of bone morphology to rotatory laxity in the ACL deficient knee. Increased lateral tibial plateau slope was shown to be a significant independent predictor of high laxity. These findings could help guide treatment strategies in patients with high grade rotatory laxity. Further research into the role of tibial osteotomies in this sub-group is warranted