The tibial component of total knee arthroplasty can either be an all-polyethylene (AP) implant or a metal-backed (MB) implant. This study aims to compare the five-year functional outcomes of AP tibial components to MB components in patients aged over 70 years. Secondary aims are to compare quality of life, implant survivorship, and cost-effectiveness. A group of 130 patients who had received an AP tibial component were matched for demographic factors of age, BMI, American Society of Anesthesiologists (ASA) grade, sex, and preoperative Knee Society Score (KSS) to create a comparison group of 130 patients who received a MB tibial component. Functional outcome was assessed prospectively by KSS, quality of life by 12-Item Short-Form Health Survey questionnaire (SF-12), and range of motion (ROM), and implant survivorships were compared. The SF six-dimension (6D) was used to calculate the incremental cost effectiveness ratio (ICER) for AP compared to MB tibial components using quality-adjusted life year methodology.Aims
Methods
Aims. Meniscal allograft transplantation (MAT) for patients with symptomatic meniscal loss has demonstrated good clinical results and survivorship. Factors that affect both functional outcome and survivorship have been reported in the literature. These are typically single-centre case series with relatively small numbers and conflicting results. Our aim was to describe an international, two-centre case series, and identify factors that affect both functional outcome and survival. Methods. We report factors that affect outcome on 526 patients undergoing MAT across two sites (one in the UK and one in Italy). Outcomes of interest were the Knee injury and Osteoarthritis Outcome Score four (KOOS4) at two years and failure rates. We performed multiple regression analysis to examine for factors affecting KOOS, and Cox proportional hazards models for survivorship. Results. Our results indicate that baseline KOOS4 score affects functional outcome at two years, but no other included factors were significantly related to functional outcome. The only factor that affected failure rate was the presence of cartilage lesions down to bone on both the femur and
Aims. Unicompartmental and total knee arthroplasty (UKA and TKA) are successful treatments for osteoarthritis, but the solid metal implants disrupt the natural distribution of stress and strain which can lead to bone loss over time. This generates problems if the implant needs to be revised. This study investigates whether titanium lattice UKA and TKA implants can maintain natural load transfer in the proximal
Aims. Patient dissatisfaction is not uncommon following primary total knee arthroplasty. One proposed method to alleviate this is by improving knee kinematics. Therefore, we aimed to answer the following research question: are there significant differences in knee kinematics based on the design of the tibial insert (cruciate-retaining (CR), ultra-congruent (UC), or medial congruent (MC))?. Methods. Overall, 15 cadaveric knee joints were examined with a CR implant with three different tibial inserts (CR, UC, and MC) using an established knee joint simulator. The effects on coronal alignment, medial and lateral femoral roll back, femorotibial rotation, bony rotations (femur,
Aims. One of the main causes of tibial revision surgery for total knee arthroplasty is aseptic loosening. Therefore, stable fixation between the tibial component and the cement, and between the tibial component and the bone, is essential. A factor that could influence the implant stability is the implant design, with its different variations. In an existing implant system, the tibial component was modified by adding cement pockets. The aim of this experimental in vitro study was to investigate whether additional cement pockets on the underside of the tibial component could improve implant stability. The relative motion between implant and bone, the maximum pull-out force, the tibial cement mantle, and a possible path from the bone marrow to the metal-cement interface were determined. Methods. A tibial component with (group S: Attune S+) and without (group A: Attune) additional cement pockets was implanted in 15 fresh-frozen human leg pairs. The relative motion was determined under dynamic loading (extension-flexion 20° to 50°, load-level 1,200 to 2,100 N) with subsequent determination of the maximum pull-out force. In addition, the cement mantle was analyzed radiologically for possible defects, the
Abstract. Introduction. Medial fix bearing unicompartmental knee replacement (UKR) designs are consider safe and effective implants with many registries data and big cohort series showing excellent survivorship and clinical outcome comparable to that reported for the most expensive and surgically challenging medial UKR mobile bearing designs. However, whether all polyethylene tibial components (all-poly) provided comparable results to metal-backed modular components during medial fix bearing UKR remains unclear. There have been previous suggestions that all-poly
A novel enhanced cement fixation (EF) tibial implant with deeper cement pockets and a more roughened bonding surface was released to market for an existing total knee arthroplasty (TKA) system.This randomized controlled trial assessed fixation of the both the EF (ATTUNE S+) and standard (Std; ATTUNE S) using radiostereometric analysis. Overall, 50 subjects were randomized (21 EF-TKA and 23 Std-TKA in the final analysis), and had follow-up visits at six weeks, and six, 12, and 24 months to assess migration of the tibial component. Low viscosity bone cement with tobramycin was used in a standardized fashion for all subjects. Patient-reported outcome measure data was captured at preoperative and all postoperative visits.Aims
Methods
Background. The modern modular implants allow surgeons to combine different combinations of components within the same brand of which some may have completely different design. During 1999–2012 the same cemented femur component was used together with a cemented stemmed
Introduction. Uncemented highly porous titanium implants have been shown to promote osseointegration, and may result in a durable construct for total knee arthroplasty (TKA). Given the mixed results of uncemented TKA, it is important to evaluate the early stability for this product. The objective of the following study was to use radiostereometric analysis (RSA) to assess early fixation of a highly porous tibial baseplate and metal backed patella. Methods. Twenty-seven patients (mean age 64 years, 30% female) undergoing primary TKA consented to participate in this prospective cohort study. All patients received a highly porous tibial baseplate, a metal backed patella and tantalum RSA bone markers. Implant migration was assessed using model-based RSA at 1.5, 3, 6, 12 and 24 months post-operative. Patient reported outcome measures were captured using the same follow-up schedule, and compared to pre-operative measures. Results. There were no adverse events affecting implant fixation, and no revisions. Patient function significantly improved by 3 months post-operation (p < 0.001). The highest rate of
Objectives. Little biomechanical information is available about kinematically aligned (KA) total knee arthroplasty (TKA). The purpose of this study was to simulate the kinematics and kinetics after KA TKA and mechanically aligned (MA) TKA with four different limb alignments. Materials and Methods. Bone models were constructed from one volunteer (normal) and three patients with three different knee deformities (slight, moderate and severe varus). A dynamic musculoskeletal modelling system was used to analyse the kinematics and the tibiofemoral contact force. The contact stress on the tibial insert, and the stress to the resection surface and medial tibial cortex were examined by using finite element analysis. Results. In all bone models, posterior translation on the lateral side and external rotation in the KA TKA models were greater than in the MA TKA models. The tibiofemoral force at the medial side was increased in the moderate and severe varus models with KA TKA. In the severe varus model with KA TKA, the contact stress on the tibial insert and the stress to the resection surface and to the medial tibial cortex were increased by 41.5%, 32.2% and 53.7%, respectively, compared with MA TKA, and the bone strain at the medial side was highest among all models. Conclusion. Near normal kinematics was observed in KA TKA. However, KA TKA increased the contact force, stress and bone strain at the medial side for moderate and severe varus knee models. The application of KA TKA for severe varus knees may be inadequate. Cite this article: S. Nakamura, Y. Tian, Y. Tanaka, S. Kuriyama, H. Ito, M. Furu, S. Matsuda. The effects of kinematically aligned total knee arthroplasty on stress at the medial
The Fulkerson osteotomy has proved to be a reliable treatment for subluxation of the patella due to malalignment. Aggressive rehabilitation in the early postoperative period is unwise since the proximal
A total of 22 patients with a tibial avulsion
fracture involving the insertion of the posterior cruciate ligament
(PCL) with grade II or III posterior laxity were reduced and fixed
arthroscopically using routine anterior and double posteromedial
portals. A double-strand Ethibond suture was inserted into the joint
and wrapped around the PCL from anterior to posterior to secure
the ligament above the avulsed bony fragment. Two
We report a patient with a subperiosteal ganglion cyst of the
The aim of this study was to analyse the gait
pattern, muscle force and functional outcome of patients who had undergone
replacement of the proximal
We studied the bone mineral density (BMD) and
the bone mineral content (BMC) of the proximal
Stress shielding resulting in diminished bone
density following total knee replacement (TKR) may increase the
risk of migration and loosening of the prosthesis. This retrospective
study was designed to quantify the effects of the method of fixation
on peri-prosthetic
Between 1986 and 1991, 106 patients (127 knees) underwent uncemented knee arthroplasty for osteoarthritis. There were 106 total knee arthroplasties and 21 medial unicompartmental knee arthroplasties. The arthroplasties were evaluated for aseptic loosening during the year 2000. For total arthroplasty we used 77 porous-coated anatomic prostheses and 29 press-fit condylar prostheses. The mean bone mineral content of the proximal
We report the long-term outcome of 33 patients
(37 knees) who underwent proximal tibial open-wedge osteotomy with
hemicallotasis (HCO) for medial osteoarthritis of the knee between
1995 and 2000. Among these, 29 patients with unilateral HCO were
enrolled and 19 were available for review at a mean of 14.2 years
(10 to 15.7) post-operatively. For these 19 patients, the mean Hospital
for Special Surgery knee score was 60 (57 to 62) pre-operatively
and 85 (82 to 87) at final follow-up (p <
0.001; paired Cite this article:
Clinical experience of impaction bone grafting for revision knee arthroplasty is limited, with initial stability of the tibial tray emerging as a major concern. The length of the stem and its diameter have been altered to improve stability. Our aim was to investigate the effect of the type of stem, support of the rim and graft impaction on early stability of the tray. We developed a system for impaction grafting of trays which we used with morsellised bone in artificial tibiae. Trays with short, long thick or long thin stems were implanted, with or without support of the rim. They were cyclically loaded while measuring relative movement. Long-stemmed trays migrated 4.5 times less than short-stemmed trays, regardless of diameter. Those with support migrated 2.8 times less than those without. The migration of short-stemmed trays correlated inversely with the density of the impacted groups. That of impaction-grafted tibial trays was in the range reported for uncemented primary trays. Movements of short-stemmed trays without cortical support were largest and sensitive to the degree of compaction of the graft. If support of the rim was sufficient or a long stem was used, impacted morsellised bone graft achieved adequate initial stability.
Conventional high tibial osteotomy for osteoarthritis of the medial compartment of the knee with closed-wedge or dome osteotomy (DMO) may produce shortening of the patellar tendon and loss of inclination of the proximal tibial plateau or of the offset of the tibial condyle relative to its bony axis. This can make subsequent total knee arthroplasty technically demanding. We undertook a prospective study comparing these changes after DMO with those after using open-wedge osteotomy hemicallotasis (HCO). A total of 50 knees with arthritis of the medial compartment in 46 consecutive patients was randomly allocated to either DMO or HCO. There were no significant differences between the groups with regard to age, gender, femorotibial angle before operation or the angle of correction. Radiological studies showed that HCO caused little change in the length of the patellar tendon or the inclination angle of the tibial plateau, while after DMO both gradually decreased. The degree of tibial condylar offset increased in both groups, but less so in the HCO group.