Advertisement for orthosearch.org.uk
Results 1 - 20 of 69
Results per page:
The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1240 - 1248
1 Nov 2024
Smolle MA Keintzel M Staats K Böhler C Windhager R Koutp A Leithner A Donner S Reiner T Renkawitz T Sava M Hirschmann MT Sadoghi P

Aims. This multicentre retrospective observational study’s aims were to investigate whether there are differences in the occurrence of radiolucent lines (RLLs) following total knee arthroplasty (TKA) between the conventional Attune baseplate and its successor, the novel Attune S+, independent from other potentially influencing factors; and whether tibial baseplate design and presence of RLLs are associated with differing risk of revision. Methods. A total of 780 patients (39% male; median age 70.7 years (IQR 62.0 to 77.2)) underwent cemented TKA using the Attune Knee System) at five centres, and with the latest radiograph available for the evaluation of RLL at between six and 36 months from surgery. Univariate and multivariate logistic regression models were performed to assess associations between patient and implant-associated factors on the presence of tibial and femoral RLLs. Differences in revision risk depending on RLLs and tibial baseplate design were investigated with the log-rank test. Results. The conventional and novel Attune baseplates were used in 349 (45%) and 431 (55%) patients, respectively. At a median follow-up of 14 months (IQR 11 to 25), RLLs were present in 29% (n = 228/777) and 15% (n = 116/776) of the tibial and femoral components, respectively, and were more common in the conventional compared to the novel baseplate. The novel baseplate was independently associated with a lower incidence of tibial and femoral RLLs (both regardless of age, sex, BMI, and time to radiograph). One- and three-year revision risk was 1% (95% CI 0.4% to 1.9%)and 6% (95% CI 2.6% to 13.2%), respectively. There was no difference between baseplate design and the presence of RLLs on the the risk of revision at short-term follow-up. Conclusion. The overall incidence of RLLs, as well as the incidence of tibial and femoral RLLs, was lower with the novel compared to the conventional tibial Attune baseplate design, but higher than in the predecessor design and other commonly used TKA systems. Cite this article: Bone Joint J 2024;106-B(11):1240–1248


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_9 | Pages 71 - 71
1 Oct 2020
Restrepo S Hozack WJ Smith EB
Full Access

Introduction. Cementless TKA offers the potential for strong fixation through biologic fixation technology as compared to cemented TKA where fixation is achieved through mechanical integration of the cement. Few mid-term results are available for newer cementless TKA designs that have used additive manufacturing (3-D printing) for component design. The purpose of this study is to present minimum 5-year clinical outcomes and implant survivorship of a specific cementless TKA using a novel 3-D printed tibial baseplate. Methods. This is a single institution registry review of the prospectively obtained data on 296 cementless TKA using a novel 3-D printed tibial baseplate with minimum 5-year follow-up. Outcomes were determined by comparing pre- and post-operative Knee Injury and Osteoarthritis Outcome Score for Joint Replacement (KOOS JR) scores and pre- and post-operative 12 item Veterans RAND/Short Form Health Survey (VR/SF-12). Aseptic loosening as well as revision for any reason were the endpoints used to determine survivorship at 5 years. Results. At minimum 5-year follow-up, the KOOS JR score improved from 34.88 pre-operatively to 84.29 post-operatively (p-values = 0.0001), the VR/SF-12 scores improved from PH − 31.98 pre-operatively to 42.80 post-operatively (p-values = 0.0001) and the MH − 37.24 pre-operatively to 55.16 post-operatively (p-value = 0.0001). Eleven revisions were performed for an overall revision rate of 2.94% - including 5 PJI (1.34%), 3 loosening (0.80%), 1 instability (0.27%), 2 pain (0.53%). The overall 5-year survivorship was 97.1% and survivorship for aseptic loosening as the endpoint was 98.40%. The survivorship of the 3-D printed porous tibial component was 99.2%. Conclusion. This 3-D printed tibial baseplate and cementless total knee system shows excellent survivorship at 5-year follow-up. The design of this implant and the ability to obtain cementless fixation offers promise for excellent long-term durability


The Bone & Joint Journal
Vol. 98-B, Issue 5 | Pages 616 - 621
1 May 2016
Teeter MG Thoren J Yuan X McCalden RW MacDonald SJ Lanting BA Naudie DDR

Aims. The purpose of the present study was to examine the long-term fixation of a cemented fixed-bearing polished titanium tibial baseplate (Genesis ll). . Patients and Methods. Patients enrolled in a previous two-year prospective trial (n = 35) were recalled at ten years. Available patients (n = 15) underwent radiostereometric analysis (RSA) imaging in a supine position using a conventional RSA protocol. Migration of the tibial component in all planes was compared between initial and ten-year follow-up. Outcome scores including the Knee Society Score, Western Ontario and McMaster Universities Arthritis Index, 12-item Short Form Health Survey, Forgotten Joint Score, and University of California, Los Angeles Activity Score were recorded. Results. At ten years, the mean migration of the tibial component was less than 0.1 mm and 0.1° in all planes relative to the post-operative RSA exam. Maximum total point movement increased with time (p = 0.002) from 0.23 mm (. sd. 0.18) at six weeks to 0.42 mm (. sd. 0.20) at ten years. Conclusion. The low level of tibial baseplate migration found in the present study correlates to the low rate of revision for this implant as reported in individual studies and in joint replacement registries. Take home message: Overall, the implant was found to be well fixed at ten years, supporting its continued clinical use and the predictive power of RSA for determining long-term fixation of implants. Cite this article: Bone Joint J 2016;98-B:616–21


Bone & Joint Open
Vol. 5, Issue 4 | Pages 277 - 285
8 Apr 2024
Khetan V Baxter I Hampton M Spencer A Anderson A

Aims. The mean age of patients undergoing total knee arthroplasty (TKA) has reduced with time. Younger patients have increased expectations following TKA. Aseptic loosening of the tibial component is the most common cause of failure of TKA in the UK. Interest in cementless TKA has re-emerged due to its encouraging results in the younger patient population. We review a large series of tantalum trabecular metal cementless implants in patients who are at the highest risk of revision surgery. Methods. A total of 454 consecutive patients who underwent cementless TKA between August 2004 and December 2021 were reviewed. The mean follow-up was ten years. Plain radiographs were analyzed for radiolucent lines. Patients who underwent revision TKA were recorded, and the cause for revision was determined. Data from the National Joint Registry for England, Wales, Northern Island, the Isle of Man and the States of Guernsey (NJR) were compared with our series. Results. No patients in our series had evidence of radiolucent lines on their latest radiological assessment. Only eight patients out of 454 required revision arthroplasty, and none of these revisions were indicated for aseptic loosening of the tibial baseplate. When compared to data from the NJR annual report, Kaplan-Meier estimates from our series (2.94 (95% confidence interval (CI) 1.24 to 5.87)) show a significant reduction in cumulative estimates of revision compared to all cemented (4.82 (95% CI 4.69 to 4.96)) or cementless TKA (5.65 (95% CI 5.23 to 6.10)). Our data (2.94 (95% CI 1.24 to 5.87)) also show lower cumulative revision rates compared to the most popular implant (PFC Sigma Cemented Knee implant fixation, 4.03 (95% CI 3.75 to 4.33)). The prosthesis time revision rate (PTIR) estimates for our series (2.07 (95% CI 0.95 to 3.83)) were lower than those of cemented cases (4.53 (95% CI 4.49 to 4.57)) from NJR. Conclusion. The NexGen trabecular (tantalum) cementless implant has lower revision rates in our series compared to all cemented implants and other types of cementless implants, and its use in younger patients should be encouraged. Cite this article: Bone Jt Open 2024;5(4):277–285


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_13 | Pages 15 - 15
7 Aug 2023
Deo S Jonas S Jhaj J
Full Access

Abstract. INTRODUCTION. The most frequent mode of aseptic failure of primary total knee replacements is tibial baseplate loosening. This is influenced by stresses across the implant-bone interface which can be increased in obese patients leading to potentially higher rates of early failure. The evidence is mixed as to the true effect of elevated BMI (body mass index) on revision rates. We present the experience of early tibial failures in our department and how our implant choices have evolved. METHODOLOGY. We retrospectively reviewed our unit's arthroplasty database and identified all patients who had sustained mechanical tibial failure. Data were collected on patient demographics, operative details of primary and revision operations, components used, alignment pre and post operatively and indication. Complications and further surgery performed were recorded. RESULTS. 12 patients were identified who had been revised for mechanical tibial failure. All were female, mean age 60 years (46–76). Mean BMI was 11/12 had significant comorbidities and 6/12 had risk factors for reduced bone density (inflammatory arthritis, diabetes, hypothyroid). CONCLUSION. In our consecutive series of 12 patients who presented with tibial mechanical failure, all were female and had a high BMI with the majority over 40. We recommend that a stemmed tibia construct should be used in female patients with an elevated BMI, particularly if it is over 40


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 51 - 58
1 Jun 2021
Yang J Heckmann ND Nahhas CR Salzano MB Ruzich GP Jacobs JJ Paprosky WG Rosenberg AG Nam D

Aims. Recent total knee arthroplasty (TKA) designs have featured more anatomical morphologies and shorter tibial keels. However, several reports have raised concerns about the impact of these modifications on implant longevity. The aim of this study was to report the early performance of a modern, cemented TKA design. Methods. All patients who received a primary, cemented TKA between 2012 and 2017 with a minimum two-year follow-up were included. The implant investigated features an asymmetrical tibial baseplate and shortened keel. Patient demographic details, Knee Society Scores (KSS), component alignment, and the presence of radiolucent lines at final follow-up were recorded. Kaplan-Meier analyses were performed to estimate survivorship. Results. A total of 720 of 754 primary TKAs (95.5%) were included with a mean follow-up of 3.9 years (SD 1.3); 562 (78.1%) were cruciate-retaining and 158 (21.9%) were posterior-stabilized. A total of 11 (1.5%) required reoperation for periprosthetic joint infection and seven (1.0%) for aseptic tibial loosening (five cruciate-retaining, two posterior-stabilized). Loosening occurred at a mean of 3.3 years (0.9 to 6.5). There were no cases of loosening in the 33 patients who received a 14 mm × 30 mm tibial stem extension. All-cause survivorship was 96.6% at three years (95% confidence interval (CI) 95.3% to 98.0%) and 96.2% at five years (95% CI 94.8% to 97.7%). Survivorship with revision for aseptic loosening was 99.6% at three years (95% CI 99.1% to 100.0%) and 99.1% at five years (95% CI 98.4% to 99.9%). Tibial components were in significantly more varus in those with aseptic loosening (mean 3.4° (SD 3.7°) vs 1.3° (SD 2.0°); p = 0.015). There were no other differences in demographic, radiological, or surgical characteristics between revised and non-revised TKAs for aseptic loosening (p = 0.293 to 1.00). Mean KSS improved significantly from 57.3 (SD 9.5) preoperatively to 92.6 (SD 8.9) at the final follow-up (p < 0.001). Conclusion. This is the largest series to date of this design of implant. At short-term follow-up, the rate of aseptic tibial loosening is not overly concerning. Further observation is required to determine if there will be an abnormal rate of loosening at mid- to long-term follow-up. Cite this article: Bone Joint J 2021;103-B(6 Supple A):51–58


The Bone & Joint Journal
Vol. 101-B, Issue 7_Supple_C | Pages 40 - 47
1 Jul 2019
Sporer S MacLean L Burger A Moric M

Aims. Our intention was to investigate if the highly porous biological fixation surfaces of a new 3D-printed total knee arthroplasty (TKA) achieved adequate fixation of the tibial and patellar components to the underlying bone. Patients and Methods. A total of 29 patients undergoing primary TKA consented to participate in this prospective cohort study. All patients received a highly porous tibial baseplate and metal-backed patella. Patient-reported outcomes measures were recorded and implant migration was assessed using radiostereometric analysis. Results. Patient function significantly improved by three months postoperatively (p < 0.001). Mean difference in maximum total point motion between 12 and 24 months was 0.021 mm (-0.265 to 0.572) for the tibial implant and 0.089 mm (-0.337 to 0.758) for the patellar implant. The rate of tibial and patellar migration was largest over the first six postoperative weeks, with no changes in mean tibia migration occurring after six months, and no changes in mean patellar migration occurring after six weeks. One patellar component showed a rapid rate of migration between 12 and 24 months. Conclusion. Biological fixation appears to occur reliably on the highly porous implant surface of the tibial baseplate and metal-backed patellar component. Rapid migration after 12 months was measured for one patellar component. Further investigation is required to assess the long-term stability of the 3D-printed components and to determine if the high-migrating components achieve fixation. Cite this article: Bone Joint J 2019;101-B(7 Supple C):40–47


The Bone & Joint Journal
Vol. 101-B, Issue 1_Supple_A | Pages 53 - 58
1 Jan 2019
Billi F Kavanaugh A Schmalzried H Schmalzried TP

Aims. Loosening of the tibial component after total knee arthroplasty (TKA) is a common indication for revision. Increasing the strength of the initial tibial implant/cement interface is desirable. There is little information about the surgical techniques that lead to the highest strength. We investigated the effects of eight variables on the strength of the initial tibial baseplate/cement interface. Materials and Methods. A total of 48 tibial trays were cemented into acrylic holders using cement from two manufacturers, at three different times (early, normal, and late) using two techniques: cementing the tibial plateau or the plateau and the keel; and involving two conditions of contamination with marrow fat (at the metal/cement and cement/cement interfaces). Push-out tests were performed with load continuously recorded. Results. Compared with normal conditions, early cementing increased the mean strength of the interface when using the two cements, Simplex and Palacos, by 48% and 72%, respectively. Late cementing reduced the strength by 47% and 73%, respectively. Cementing the keel increased the mean strength by 153% and 147%, respectively, for the two cements. Contamination of the metal/cement interface with fat reduced the mean strength by 99% and 94% for the two cements but adding cement to the underside of the tibial tray prior to insertion resulted in the mean strength being lowered by only 65% and 43%, respectively. Conclusion. In order to maximize the strength of the tibial tray/cement interface, cement should be applied to the component soon after mixing, contamination of the interface should be avoided, and the keel and the plateau should be cemented


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_12 | Pages 27 - 27
1 Oct 2018
Sporer S MacLean L Burger A
Full Access

Introduction. Uncemented highly porous titanium implants have been shown to promote osseointegration, and may result in a durable construct for total knee arthroplasty (TKA). Given the mixed results of uncemented TKA, it is important to evaluate the early stability for this product. The objective of the following study was to use radiostereometric analysis (RSA) to assess early fixation of a highly porous tibial baseplate and metal backed patella. Methods. Twenty-seven patients (mean age 64 years, 30% female) undergoing primary TKA consented to participate in this prospective cohort study. All patients received a highly porous tibial baseplate, a metal backed patella and tantalum RSA bone markers. Implant migration was assessed using model-based RSA at 1.5, 3, 6, 12 and 24 months post-operative. Patient reported outcome measures were captured using the same follow-up schedule, and compared to pre-operative measures. Results. There were no adverse events affecting implant fixation, and no revisions. Patient function significantly improved by 3 months post-operation (p < 0.001). The highest rate of tibia and patellar component migration occurred over the first six post-operative weeks, with minimal migration thereafter. Mean maximum total point motion (MTPM) at 24 months was 0.72 (SD 0.34) mm for the tibia, and 0.44 (SD 0.25) mm for the patella. Three tibia baseplates migrated more than 1 standard deviation greater than the mean at 24 months, and also had continuous migration (> 0.2mm of MTPM) in the second post-operative year. One patellar component showed a rapid rate of migration between 6 and 24 months, whereas all other patellar components appeared to stabilize. Conclusions. Osseointegration appears to occur on the highly porous implant surface of the tibia baseplate and metal backed patella, as evidenced by implant stability. Further follow-up is required to determine if clinical loosening will manifest in the continuously migrating implants


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_9 | Pages 66 - 66
1 Oct 2020
Yang J Heckmann ND Nahhas CR Salzano MB Ruzich GP Jacobs JJ Paprosky WG Rosenberg AG Nam D
Full Access

Introduction. Recent total knee arthroplasty (TKA) designs have featured more anatomic morphologies and shorter tibial keels. However, several reports have raised concerns regarding the impact of these modifications on implant longevity. This study's purpose is to report the early performance of a modern, cemented TKA design. Methods. All patients who received a primary, cemented TKA from 2012 to 2017 with a minimum two-year follow-up were included. This implant features an asymmetric tibial baseplate and a shortened keel. Patient demographics, Knee Society Scores (KSS), and component alignment were recorded, and Kaplan-Meier survivorship analyses were performed. Results. 720 of 754 primary TKAs (95.5%) were included for analysis (mean follow-up: 3.9 ± 1.3 years; 562 cruciate-retaining, 158 posterior-stabilized). Eleven (1.5%) were revised for periprosthetic infection and seven (1.0%) for aseptic tibial loosening (5 cruciate-retaining, 2 posterior-stabilized). Aseptic loosening occurred at a mean of 3.3 ± 2.0 years. There were no cases of aseptic loosening in 33 patients who received a 14 × 30mm tibial stem extension. All-cause survivorship was 96.6% at 3 years (95% CI: 95.3%–98.0%) and 96.2% at 5 years (95% CI: 94.8%–97.7%). Survivorship for aseptic loosening was 99.6% at 3 years (95% CI: 99.1%–100.0%) and 99.1% at 5 years (CI: 98.4%–99.9%). Tibial component alignment was more varus in aseptic loosening cases (86.6° ± 3.7° vs 88.7° ± 2.0°, p=0.02). There were no other differences in demographic, radiographic, or surgical characteristics between revised and non-revised TKAs for aseptic loosening (p=0.3–1.0). KSS improved from 57.3 pre-operatively to 92.6 post-operatively (p<0.001). Conclusion. This study comprises the largest series to date of this specific implant design. At short-term follow-up, the rate of aseptic tibial loosening is not overly concerning. But, further observation is warranted to determine if there is an abnormal rate of loosening at mid- to long-term follow-up


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_9 | Pages 72 - 72
1 Oct 2020
Howard JL Williams HA Lanting BA Teeter MG
Full Access

Background. In recent years, the use of modern cementless implants in total knee arthroplasty has been increasing in popularity. These implants take advantage of new technologies such as additive manufacturing and potentially provide a promising alternative to cemented implant designs. The purpose of this study was to compare implant migration and tibiofemoral contact kinematics of a cementless primary total knee arthroplasty (TKA) implanted using either a gap balancing (GB) or measured resection (MR) surgical technique. Methods. Thirty-nine patients undergoing unilateral TKA were recruited and assigned based on surgeon referral to an arthroplasty surgeon who utilizes either a GB (n = 19) or a MR (n = 20) surgical technique. All patients received an identical fixed-bearing, cruciate-retaining beaded peri-apatite coated cementless femoral component and a pegged highly porous cementless tibial baseplate with a condylar stabilizing tibial insert. Patients underwent a baseline radiostereometric analysis (RSA) exam at two weeks post-operation, with follow-up visits at six weeks, three months, six months, and one year post-operation. Migration including maximum total point motion (MTPM) of the femoral and tibial components was calculated over time. At the one year visit patients also underwent a kinematic exam using the RSA system. Results. Mean MTPM of the tibial component at one year post-operation was not different (mean difference = 0.09 mm, p = 0.980) between the GB group (0.85 ± 0.37 mm) and the MR group (0.94 ± 0.41 mm). Femoral component MTPM at one year post-operation was also not different (mean difference = 0.27 mm, p = 0.463) between the GB group (0.62 ± 0.34 mm) and the MR group (0.89 ± 0.44 mm). Both groups displayed a lateral pivot pattern with similar frequencies of condylar separation. Conclusion. There was no difference in implant migration and kinematics of a single-radius, cruciate retaining cementless TKA performed using a GB or MR surgical technique. The magnitude of migration suggests there is no risk of early loosening. The results provide support for the use of a cementless TKA as a viable alternative to cemented fixation


Bone & Joint Open
Vol. 4, Issue 5 | Pages 393 - 398
25 May 2023
Roof MA Lygrisse K Shichman I Marwin SE Meftah M Schwarzkopf R

Aims

Revision total knee arthroplasty (rTKA) is a technically challenging and costly procedure. It is well-documented that primary TKA (pTKA) have better survivorship than rTKA; however, we were unable to identify any studies explicitly investigating previous rTKA as a risk factor for failure following rTKA. The purpose of this study is to compare the outcomes following rTKA between patients undergoing index rTKA and those who had been previously revised.

Methods

This retrospective, observational study reviewed patients who underwent unilateral, aseptic rTKA at an academic orthopaedic speciality hospital between June 2011 and April 2020 with > one-year of follow-up. Patients were dichotomized based on whether this was their first revision procedure or not. Patient demographics, surgical factors, postoperative outcomes, and re-revision rates were compared between the groups.


Bone & Joint Open
Vol. 5, Issue 1 | Pages 20 - 27
17 Jan 2024
Turgeon TR Vasarhelyi E Howard J Teeter M Righolt CH Gascoyne T Bohm E

Aims

A novel enhanced cement fixation (EF) tibial implant with deeper cement pockets and a more roughened bonding surface was released to market for an existing total knee arthroplasty (TKA) system.This randomized controlled trial assessed fixation of the both the EF (ATTUNE S+) and standard (Std; ATTUNE S) using radiostereometric analysis.

Methods

Overall, 50 subjects were randomized (21 EF-TKA and 23 Std-TKA in the final analysis), and had follow-up visits at six weeks, and six, 12, and 24 months to assess migration of the tibial component. Low viscosity bone cement with tobramycin was used in a standardized fashion for all subjects. Patient-reported outcome measure data was captured at preoperative and all postoperative visits.


Bone & Joint Research
Vol. 13, Issue 5 | Pages 226 - 236
9 May 2024
Jürgens-Lahnstein JH Petersen ET Rytter S Madsen F Søballe K Stilling M

Aims

Micromotion of the polyethylene (PE) inlay may contribute to backside PE wear in addition to articulate wear of total knee arthroplasty (TKA). Using radiostereometric analysis (RSA) with tantalum beads in the PE inlay, we evaluated PE micromotion and its relationship to PE wear.

Methods

A total of 23 patients with a mean age of 83 years (77 to 91), were available from a RSA study on cemented TKA with Maxim tibial components (Zimmer Biomet). PE inlay migration, PE wear, tibial component migration, and the anatomical knee axis were evaluated on weightbearing stereoradiographs. PE inlay wear was measured as the deepest penetration of the femoral component into the PE inlay.


The Bone & Joint Journal
Vol. 105-B, Issue 6 | Pages 610 - 621
1 Jun 2023
Prodromidis AD Chloros GD Thivaios GC Sutton PM Pandit H Giannoudis PV Charalambous CP

Aims

Loosening of components after total knee arthroplasty (TKA) can be associated with the development of radiolucent lines (RLLs). The aim of this study was to assess the rate of formation of RLLs in the cemented original design of the ATTUNE TKA and their relationship to loosening.

Methods

A systematic search was undertaken using the Cochrane methodology in three online databases: MEDLINE, Embase, and CINAHL. Studies were screened against predetermined criteria, and data were extracted. Available National Joint Registries in the Network of Orthopaedic Registries of Europe were also screened. A random effects model meta-analysis was undertaken.


Bone & Joint Research
Vol. 11, Issue 7 | Pages 494 - 502
20 Jul 2022
Kwon HM Lee J Koh Y Park KK Kang K

Aims

A functional anterior cruciate ligament (ACL) or posterior cruciate ligament (PCL) has been assumed to be required for patients undergoing unicompartmental knee arthroplasty (UKA). However, this assumption has not been thoroughly tested. Therefore, this study aimed to assess the biomechanical effects exerted by cruciate ligament-deficient knees with medial UKAs regarding different posterior tibial slopes.

Methods

ACL- or PCL-deficient models with posterior tibial slopes of 1°, 3°, 5°, 7°, and 9° were developed and compared to intact models. The kinematics and contact stresses on the tibiofemoral joint were evaluated under gait cycle loading conditions.


Bone & Joint Open
Vol. 3, Issue 6 | Pages 495 - 501
14 Jun 2022
Keohane D Sheridan GA Masterson E

Aims

Total knee arthroplasty (TKA) is a common and safe orthopaedic procedure. Zimmer Biomet's NexGen is the second most popular brand of implant used in the UK. The primary cause of revision after the first year is aseptic loosening. We present our experience of using this implant, with significant concerns around its performance with regards early aseptic loosening of the tibial component.

Methods

A retrospective, single-surgeon review was carried out of all of the NexGen Legacy Posterior Stabilized (LPS) TKAs performed in this institute. The specific model used for the index procedures was the NexGen Complete Knee System (Legacy Knee-Posterior Stabilized LPS-Flex Articular Surface, LPS-Flex Femoral Component Option, and Stemmed Nonaugmentable Tibial Component Option).


Aims

The primary objective of this study was to compare the five-year tibial component migration and wear between highly crosslinked polyethylene (HXLPE) inserts and conventional polyethylene (PE) inserts of the uncemented Triathlon fixed insert cruciate-retaining total knee arthroplasty (TKA). Secondary objectives included clinical outcomes and patient-reported outcome measures (PROMs).

Methods

A double-blinded, randomized study was conducted including 96 TKAs. Tibial component migration and insert wear were measured with radiostereometric analysis (RSA) at three, six, 12, 24, and 60 months postoperatively. PROMS were collected preoperatively and at all follow-up timepoints.


The Bone & Joint Journal
Vol. 105-B, Issue 12 | Pages 1271 - 1278
1 Dec 2023
Rehman Y Korsvold AM Lerdal A Aamodt A

Aims

This study compared patient-reported outcomes of three total knee arthroplasty (TKA) designs from one manufacturer: one cruciate-retaining (CR) design, and two cruciate-sacrificing designs, anterior-stabilized (AS) and posterior-stabilized (PS).

Methods

Patients scheduled for primary TKA were included in a single-centre, prospective, three-armed, blinded randomized trial (n = 216; 72 per group). After intraoperative confirmation of posterior cruciate ligament (PCL) integrity, patients were randomly allocated to receive a CR, AS, or PS design from the same TKA system. Insertion of an AS or PS design required PCL resection. The primary outcome was the mean score of all five subscales of the Knee injury and Osteoarthritis Outcome Score (KOOS) at two-year follow-up. Secondary outcomes included all KOOS subscales, Oxford Knee Score, EuroQol five-dimension health questionnaire, EuroQol visual analogue scale, range of motion (ROM), and willingness to undergo the operation again. Patient satisfaction was also assessed.


The Bone & Joint Journal
Vol. 106-B, Issue 9 | Pages 916 - 923
1 Sep 2024
Fricka KB Wilson EJ Strait AV Ho H Hopper, Jr RH Hamilton WG Sershon RA

Aims

The optimal bearing surface design for medial unicompartmental knee arthroplasty (UKA) remains controversial. The aim of this study was to compare outcomes of fixed-bearing (FB) and mobile-bearing (MB) UKAs from a single high-volume institution.

Methods

Prospectively collected data were reviewed for all primary cemented medial UKAs performed by seven surgeons from January 2006 to December 2022. A total of 2,999 UKAs were identified, including 2,315 FB and 684 MB cases. The primary outcome measure was implant survival. Secondary outcomes included 90-day and cumulative complications, reoperations, component revisions, conversion arthroplasties, range of motion, and patient-reported outcome measures. Overall mean age at surgery was 65.7 years (32.9 to 94.3), 53.1% (1,593/2,999) of UKAs were implanted in female patients, and demographics between groups were similar (p > 0.05). The mean follow-up for all UKAs was 3.7 years (0.0 to 15.6).