Aims. A novel enhanced cement fixation (EF)
Introduction. Aseptic loosening is one of the highest causes for revision in total knee arthroplasty (TKA). With growing interest in anatomically aligned (AA) TKA, it is important to understand if this surgical technique affects cemented tibial fixation any differently than mechanical alignment (MA). Previous studies have shown that lipid/marrow infiltration (LMI) during implantation may significantly reduce fixation of
The role of modular
Aims. It is increasingly appreciated that coordinated regulation of angiogenesis and osteogenesis is needed for bone formation. How this regulation is achieved during peri-implant bone healing, such as osseointegration, is largely unclear. This study examined the relationship between angiogenesis and osteogenesis in a unique model of osseointegration of a mouse
The purpose was to assess the effect of the posterior slope on the long-term outcome of unicompartmental arthroplasty in knees with intact and deficient anterior cruciate ligaments. We retrospectively reviewed ninety-nine unicompartmental arthroplasties after a mean duration of follow-up of sixteen years (12 to 20 years). At the time of the arthroplasty, the anterior cruciate ligament was considered to be normal in fifty knees, damaged in thirty-one, and absent in eighteen. At the most recent follow-up, we measured the posterior tibial slope and the anterior tibial translation on standing lateral radiographs. In the group of seventy-seven knees that had not been revised by the time of the most recent follow-up, there was a significant linear relationship between anterior tibial translation (mean, 3.7 mm) and posterior tibial slope (mean, 4.3) (p = 0.01). The mean posterior slope of the
Objectives. Modularity in total knee arthroplasty, particularly in revisions, is a common method to fit the implants to a patient's anatomy when additional stability or fixation is needed. In such cases, it may be necessary to employ multiple points of modularity to better match the anatomy. Taper junction strength at each of these levels is critical to maintain the mechanical stability of the implant and minimize micromotion. This effect of distributed assembly loads through multiple tapers and the resulting strength of the construct have not been previously evaluated on this revision
Purpose of the study: Rotation of the
Aseptic loosening is a leading cause of uncemented arthroplasty failure, often accompanied by fibrotic tissue at the bone-implant interface. A biological target, neutrophil extracellular traps (NETs), was investigated as a crucial connection between the innate immune system’s response to injury, fibrotic tissue development, and proper bone healing. Prevalence of NETs in peri-implant fibrotic tissue from aseptic loosening patients was assessed. A murine model of osseointegration failure was used to test the hypothesis that inhibition (through Patient peri-implant fibrotic tissue was analyzed for NETs biomarkers. To enhance osseointegration in loose implant conditions, an innate immune system pathway (NETs) was either inhibited (Aims
Methods
Conflicting clinical results are reported for the ATTUNE Total Knee Arthroplasty (TKA). This randomized controlled trial (RCT) evaluated five-year follow-up results comparing cemented ATTUNE and PFC-Sigma cruciate retaining TKAs, analyzing component migration as measured by radiostereometric analysis (RSA), clinical outcomes, patient-reported outcome measures (PROMs), and radiological outcomes. A total of 74 primary TKAs were included in this single-blind RCT. RSA examinations were performed, and PROMs and clinical outcomes were collected immediate postoperatively, and at three, six, 12, 24, and 60 months’ follow-up. Radiolucent lines (RLLs) were measured in standard anteroposterior radiographs at six weeks, and 12 and 60 months postoperatively.Aims
Methods
Poor osseointegration of cementless implants is the leading clinical cause of implant loosening, subsidence, and replacement failure, which require costly and technically challenging revision surgery. The mechanism of osseointegration requires further elucidation. We have recently developed a novel titanium implant for the mouse tibia that maintains in vivo knee joint function and allows us to study osseointegration in an intra-articular, load-bearing environment. Vascular endothelial growth factor (VEGF) is one of the most important growth factors for regulation of vascular development and angiogenesis. It also plays critical roles in skeletal development and bone repair and regeneration. A specialized subset of vascular endothelium, CD31hiEMCNhi cells displaying high cell surface expression of CD31 and Endomucin, has been reported to promote osteoblast maturation and may be responsible for bone formation during development and fracture healing. Because of their potential role in osseointegration, the aim of this study was to use our mouse implant model to investigate the role of VEGF and CD31hiEMCNhi endothelium in osseointegration. Under an IACUC-approved protocol, the implant was inserted into the right tibia of 16-week-old female C57BL/6 mice (N = 38). The mice were then randomized into 2 groups: Control group (N=19) and Anti-VEGFR group (N=19). A cocktail of VEGFR-1 antibody (25mg/kg) and VEGFR-2 antibody (25mg/kg) was given to the mice in the Anti-VEGFR group by intraperitoneal injection every third day starting immediately after surgery until euthanasia. An equivalent amount of an isotype control antibody was given to the control group. Flow cytometric (N = 4/group) and immunofluorescencent (N = 3/group) analyses were performed at 2 weeks post-implantation to detect the distribution and density of CD31hiEMCNhi endothelium in the peri-implant bone. Pull-out testing was used at 4 weeks post-implantation to determine the strength of the bone-implant interface.Introduction
Methods
We evaluated the impact of pre-coating the tibial
component with polymethylmethacrylate (PMMA) on implant survival
in a cohort of 16 548 primary NexGen total knee replacements (TKRs)
in 14 113 patients. In 13 835 TKRs a pre-coated tray was used while
in 2713 TKRs the non-pre-coated version of the same tray was used.
All the TKRs were performed between 2001 and 2009 and were cemented.
TKRs implanted with a pre-coated tibial component had a lower cumulative
survival than those with a non-pre-coated tibial component (p =
0.01). After adjusting for diagnosis, age, gender, body mass index,
American Society of Anesthesiologists grade, femoral coupling design, surgeon
volume and hospital volume, pre-coating was an independent risk
factor for all-cause aseptic revision (hazard ratio 2.75, p = 0.006).
Revision for aseptic loosening was uncommon for both pre-coated
and non-pre-coated trays (rates of 0.12% and 0%, respectively).
Pre-coating with PMMA does not appear to be protective of revision
for this tibial tray design at short-term follow-up. Cite this article:
Aims. Unicompartmental and total knee arthroplasty (UKA and TKA) are successful treatments for osteoarthritis, but the solid metal implants disrupt the natural distribution of stress and strain which can lead to bone loss over time. This generates problems if the implant needs to be revised. This study investigates whether titanium lattice UKA and TKA implants can maintain natural load transfer in the proximal tibia. Methods. In a cadaveric model, UKA and TKA procedures were performed on eight fresh-frozen knee specimens, using conventional (solid) and titanium lattice
Miniscrew implants (MSIs) are widely used to provide absolute anchorage for the orthodontic treatment. However, the application of MSIs is limited by the relatively high failure rate (22.86%). In this study, we wished to investigate the effects of amorphous and crystalline biomimetic calcium phosphate coating on the surfaces of MSIs with or without the incorporated BSA for the osteointegration process with an aim to facilitate the early loading of MSIs. Amorphous and crystalline coatings were prepared on titanium mini-pin implants. Characterizations of coatings were examined by Scanning electron microscopy (SEM), Confocal laser-scanning dual-channel-fluorescence microscopy (CLSM) and Fourier-transform infrared spectroscopy (FTIR). The loading and release kinetics of bovine serum albumin (BSA) were evaluated by Enzyme linked immunosorbent assay (ELISA). Activity of alkaline phosphate (ALP) was measured by using the primary osteoblasts. In vivo, a model of metaphyseal
Abstract. Objectives. Unicompartmental and total knee arthroplasty (UKA and TKA) are successful treatments for osteoarthritis, but monolithic implants disrupt the natural homeostasis of bone which leads to bone loss over time. This can cause problems if the implant needs to be revised. This study aimed to demonstrate that
Screw fixation is an established method for anterior cruciate ligament (ACL) reconstruction, although with a high rate of implant-related complications. An allograft system for implant fixation in ACL reconstruction, the Shark Screw ACL (surgebright GmbH) could overcome some of the shortcomings of bioabsorbable screws, such as foreign body reaction, need for implant removal and imaging artefacts. However, it needs to provide sufficient mechanical stability. Therefore, the aim of this study was to investigate the biomechanical stability, especially graft slippage, of the novel allograft system versus a conventional bioabsorbable interference screw (BioComposite Interference Screw; Arthrex Inc.) for
Aim. The osteolytic process of osteomyelitis is, according to textbooks, caused by increased osteoclast activity due to RANKL production by osteoblasts. However, recent findings contradict this theory. Therefore, the aim was to investigate, in a porcine osteomyelitis model, how osteolysis is affected by massive inflammation and RANKL blocking, respectively. In parallel, patients with chronic osteomyelitis, diabetes, foot osteomyelitis, and fracture related infections (FRI) were included for advanced histological analysis of osteolysis. Methods. In pigs, a
Introduction. Aseptic loosening of total knee replacements is a leading cause for revision. It is known that micromotion has an influence on the loosening of cemented implants though it is not yet well understood what the effect of repeated physiological loading has on the micromotion between implants and cement mantle. This study aims to investigate effect of physiological loading on the stability of
Aims. Ideal component sizing may be difficult to achieve in unicompartmental knee arthroplasty (UKA). Anatomical variants, incremental implant size, and a reduced surgical exposure may lead to over- or under-sizing of the components. The purpose of this study was to compare the accuracy of UKA sizing with robotic-assisted techniques versus a conventional surgical technique. Methods. Three groups of 93 medial UKAs were assessed. The first group was performed by a conventional technique, the second group with an image-free robotic-assisted system (Image-Free group), and the last group with an image-based robotic arm-assisted system, using a preoperative CT scan (Image-Based group). There were no demographic differences between groups. We compared six parameters on postoperative radiographs to assess UKA sizing. Incorrect sizing was defined by an over- or under-sizing greater than 3 mm. Results. There was a higher rate of tibial under-sizing posteriorly in the conventional group compared to robotic-assisted groups (47.3% (n = 44) in conventional group, 29% (n = 27) in Image-Free group, 6.5% (n = 6) in Image-Based group; p < 0.001), as well as a higher rate of femoral under-sizing posteriorly (30.1% (n = 28) in conventional group, 7.5% (n = 7) in Image-Free group, 12.9% (n = 12) in Image-Based group; p < 0.001). The posterior femoral offset was more often increased in the conventional group, especially in comparison to the Image-Based group (43% (n = 40) in conventional group, 30.1% (n = 28) in Image-Free group, 8.6% (n = 8) in Image-Based group; p < 0.001). There was no significant overhang of the femoral or
Introduction. Patients with aseptic loosening, a cause of failure in uncemented total joint arthroplasty (TJA), often present with fibrous tissue at the bone-implant interface. 1. In this study, we characterize the presence of neutrophil extracellular traps (NETs) in the intramedullary fibrotic membrane of aseptic loosening patients. We further explore the role of NETs, mediated by peptidyl arginine deiminase (PAD4), in peri-implant fibrosis and osseointegration failure through a murine model of unstable
Introduction & Aim. The use of All-Poly Tibia has been in practice since the early 1970's. Recently due to the reports on wear and osteolysis in other articulations, this component has generated significant interest. In the current study we aim to report early medium-term results of All-poly Tibial components in elderly (>70 years) patients. Method. Study of 455 cases done between 2005-2020. All the cases were performed by a single surgeon. All-Poly