To be able to assess the biomechanical and functional effects of ankle injury and disease it is necessary to characterise healthy ankle kinematics. Due to the anatomical complexity of the ankle, it is difficult to accurately measure the Tibiotalar and Subtalar joint angles using traditional marker-based motion capture techniques. Biplane Video X-ray (BVX) is an imaging technique that allows direct measurement of individual bones using high-speed, dynamic X-rays. The objective is to develop an in-vivo protocol for the hindfoot looking at the tibiotalar and subtalar joint during different activities of living. A bespoke raised walkway was manufactured to position the foot and ankle inside the field of view of the BVX system. Three healthy volunteers performed three gait and step-down trials while capturing Biplane Video X-Ray (125Hz, 1.25ms, 80kVp and 160 mA) and underwent MR imaging (Magnetom 3T Prisma, Siemens) which were manually segmented into 3D bone models (Simpleware Scan IP, Synopsis). Bone position and orientation for the Talus, Calcaneus and Tibia were calculated by manual matching of 3D Bone models to X-Rays (DSX Suite, C-Motion, Inc.). Kinematics were calculated using MATLAB (MathWorks, Inc. USA). Pilot results showed that for the subtalar joint there was greater range of motion (ROM) for Inversion and Dorsiflexion angles during stance phase of gait and reduced ROM for Internal Rotation compared with step down. For the
Management of ankle arthritis in young patients is challenging. Although ankle arthrodesis gives consistent pain relief, it leads to loss of function and adjacent joint arthritis. Ankle joint distraction (AJD) has been shown to give good outcomes in adults with osteoarthritis or post-traumatic arthritis. The efficacy in children or young adults and those with juvenile idiopathic arthritis is less well evidenced. Clinical notes and radiographs of all patients (n=6) managed with AJD in one tertiary referral centre were retrospectively reviewed. Radiographs were taken pre-surgery, intra-operatively, 1 month following frame removal and at the last follow up,
Abstract. Skeletal kinematics are traditionally measured by motion analysis methods such as optical motion capture (OMC). While easy to carry out and clinically relevant for certain applications, it is not suitable for analysing the ankle joint due to its anatomical complexity. A greater understanding of the function of healthy ankle joints could lead to an improvement in the success of ankle-replacement surgeries. Biplane video X-ray (BVX) is a technique that allows direct measurement of individual bones using highspeed, dynamic X-Rays. Objective. To develop a protocol to quantify in-vivo foot and ankle kinematics using a bespoke High-speed Dynamic Biplane X-ray system combined with OMC. Methods. Two healthy volunteers performed five level walks and step-down trials while simultaneous capturing BVX and synchronised OMC. participants undertook MR imaging (Magnetom 3T Prisma, Siemens) which was manually segmented into 3D bone models (Simpleware Scan IP, Synopsis). Bone position and orientation for the Talus, Tibia and Calcaneus were calculated by manual matching of 3D Bone models to X-Rays (DSX Suite, C-Motion, Inc.). OMC markers were tracked (QTM, Qualisys) and processed using Visual 3D (C-motion, Inc.). Results. Initial results for level walking showed that OMC overestimated the rotational range of motion (ROM) in all three planes for the
To review the systemic impact of smoking on bone healing as evidenced
within the orthopaedic literature. A protocol was established and studies were sourced from five
electronic databases. Screening, data abstraction and quality assessment
was conducted by two review authors. Prospective and retrospective
clinical studies were included. The primary outcome measures were
based on clinical and/or radiological indicators of bone healing.
This review specifically focused on non-spinal orthopaedic studies.Objectives
Methods
A cavovarus foot deformity was simulated in cadaver specimens by inserting metallic wedges of 15° and 30° dorsally into the first tarsometatarsal joint. Sensors in the ankle joint recorded static tibiotalar pressure distribution at physiological load. The peak pressure increased significantly from neutral alignment to the 30° cavus deformity, and the centre of force migrated medially. The anterior migration of the centre of force was significant for both the 15° (repeated measures analysis of variance (ANOVA), p = 0.021) and the 30° (repeated measures ANOVA, p = 0.007) cavus deformity. Differences in ligament laxity did not influence the peak pressure. These findings support the hypothesis that the cavovarus foot deformity causes an increase in anteromedial ankle joint pressure leading to anteromedial arthrosis in the long term, even in the absence of lateral hindfoot instability.