Advertisement for orthosearch.org.uk
Results 1 - 20 of 115
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_11 | Pages 8 - 8
7 Jun 2023
Al-Hilfi L Afzal I Radha S Shenouda M
Full Access

Simulation use in training is rapidly becoming a mainstay educational tool seen to offer perceived benefits of a safe environment for repeated practice and learning from errors without jeopardising patient safety. However, there is currently little evidence addressing the trainees’ perspectives and attitudes of simulation training, particularly in comparison with trainers and the educational community. This study investigates orthopaedic trainees’ and trainers’ conceptions of learning from simulation-based training, exploring whether the orthopaedic community are ‘on the same page’, with respect to each other and the educational community. Qualitative research in the form of semi-structured interviews is used to identify commonalities and differences between trainee and trainer conceptions, based on respective experiences and expectations, and suggests ways of enhancing collaboration between stakeholders to achieve better alignment of conceptions. The research revealed that orthopaedic trainees and trainers conceive key themes in a similar manner: supporting the role of simulation in developing the ‘pre-trained novice’ as opposed to skill refinement or maintenance; attributing greater importance to non-technical rather than technical skills development using simulation; questioning the transferability to practice of learnt skills; and emphasising similar barriers to increased curriculum integration, including financing and scheduling. These conceptions are largely in contrast to those of the educational community, possibly due to differing conceptions of learning between the two communities, along with a lack of a common language in the discourse of simulation. There was some evidence of changing attitudes and positively emerging conceptions among the orthopaedic community, and capitalising on this by engaging trainers and trainees may help reconcile the differing conceptions and facilitate increasing simulation utilisation and curriculum integration. Developing a common language to make the educational more tangible to surgeons, bringing the educational closer to the surgical, may help maximise the educational benefit and shape the future of simulation use in surgical training


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_11 | Pages 40 - 40
7 Jun 2023
Edwards T Soussi D Gupta S Khan S Patel A Patil A Badri D Liddle A Cobb J Logishetty K
Full Access

Superior teamwork in the operating theatre is associated with improved technical performance and clinical outcomes. Yet modern rota patterns, workforce shortages, and increasing complexity of surgery, means that there is less familiarity between staff and the required choreography. Immersive Virtual Reality (iVR) can successfully train surgical staff individually, however iVR team training has yet to be investigated. We aimed to design a multiplayer iVR platform for anterior approach total hip arthroplasty (AA-THA) and assess if multiplayer iVR training was superior to single player training for acquisition of both technical and non-technical skills. An iVR platform with choreographed roles for the surgeon and scrub nurse was developed using Cognitive Task Analysis. Forty participants were randomised to individual or team iVR training. Individually- trained participants practiced alongside virtual avatar counterparts, whilst teams trained live in pairs. Both groups underwent five iVR training sessions over 6-weeks. Subsequently, they underwent a real-life assessment in which they performed AA-THA on a high-fidelity model with real equipment in a simulated theatre. Teams performed together and individually trained participants were randomly paired up. Videos were marked by two blinded assessors recording the NOTSS, NOTECHS II and SPLINTS scores - validated technical and non-technical scores assessing surgeon and scrub nurse skills. Secondary outcomes were procedure time and number of technical errors. Teams outperformed individually trained participants for non-technical skills in the real-world assessment (NOTSS 13.1 ± 1.5 vs 10.6 ± 1.6, p =0.002, NOTECHS-II score 51.7 ± 5.5 vs 42.3 ± 5.6, p=0.001 and SPLINTS 10 ± 1.2 vs 7.9 ± 1.6, p = 0.004). They completed the assessment 28.1% faster (27.2 minutes ± 5.5 vs 41.8 ±8.9, p<0.001), and made fewer than half the number of technical errors (10.4 ± 6.1 vs 22.6 ± 5.4, p<0.001). Multiplayer training leads to faster surgery with fewer technical errors and the development of superior non-technical skills for anterior approach total hip arthroplasty. The convention of surgeons and nurses training separately, but undertaking real complex surgery together, can be supplanted by team training, delivered through immersive virtual reality


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_11 | Pages 37 - 37
7 Jun 2023
Edwards T Kablean-Howard F Poole I Edwards J Karia M Liddle A Cobb J Logishetty K
Full Access

Superior team performance in surgery leads to fewer technical errors, reduced mortality, and improved patient outcomes. Scrub nurses are a pivotal part of this team, however they have very little structured training, leading to high levels of stress, low confidence, inefficiency, and potential for harm. Immersive virtual reality (iVR) simulation has demonstrated excellent efficacy in training surgeons. We tested the efficacy of an iVR curriculum for training scrub nurses in performing their role in an anterior approach total hip arthroplasty (AA-THA). Sixty nursing students were included in this study and randomised in a 1:1 ratio to learning the scrub nurse role for an AA-THA using either conventional training or iVR. The training was derived through expert consensus with senior surgeons, scrub nurses and industry reps. Conventional training consisted of a 1-hour seminar and 2 hours of e-learning where participants were taught the equipment and sequence of steps. The iVR training involved 3 separate hour-long sessions where participants performed the scrub nurse role with an avatar surgeon in a virtual operation. The primary outcome was their performance in a physical world practical objective assessment with real equipment. Data were confirmed parametric using the Shapiro-Wilk test and means compared using the independent samples student's t-test. 53 participants successfully completed the study (26 iVR, 27 conventional) with a mean age of 31±9 years. There were no significant differences in baseline characteristics or baseline knowledge test scores between the two groups (p>0.05). The iVR group significantly outperformed the conventionally trained group in the real-world assessment, scoring 66.9±17.9% vs 41.3±16.7%, p<0.0001. iVR is an easily accessible, low cost training modality which could be integrated into scrub nursing curricula to address the current shortfall in training. Prolonged operating times are strongly associated with an increased risk of developing serious complications. By upskilling scrub nurses, operations may proceed more efficiently which in turn may improve patient safety


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_11 | Pages 18 - 18
7 Jun 2023
Schapira B Spanoudakis E Jaiswal P Patel A
Full Access

Surgical trainees are finding it increasingly more challenging to meet operative requirements and coupled with the effects of COVID-19, we face a future of insufficiently trained surgeons. As a result, virtual reality (VR) simulator training has become more prevalent and whilst more readily accepted in certain arthroscopic fields, its use in hip arthroscopy (HA) remains novel. This project aimed to validate VR high-fidelity HA simulation and assess its functional use in arthroscopic training. Seventy-two participants were recruited to perform two basic arthroscopic tasks on a VR HA simulator, testing hip anatomy, scope manipulation and triangulation skills. They were stratified into novice (39) and experienced (33) groups based on previous arthroscopy experience. Metric parameters recorded from the simulator were used to assess construct validity. Face validity was evaluated using a Likert-style questionnaire. All recordings were reviewed by 2 HA experts for blinded ASSET score assessment. Experienced participants were significantly faster in completing both tasks compared with novice participants (p<0.001). Experienced participants damaged the acetabular and femoral cartilage significantly less than novice participants (p=0.011) and were found to have significantly reduced path length of both camera and instrument across both tasks (p=0.001, p=0.007), demonstrating significantly greater movement economy. Total ASSET scores were significantly greater in experienced participants compared to novice participants (p=0.041) with excellent correlation between task time, cartilage damage, camera and instrument path length and corresponding ASSET score constituents. 62.5% of experienced participants reported a high degree of realism in all facets of external, technical and haptic experience with 94.4% advising further practice would improve their arthroscopic skills. There was a relative improvement of 43% in skill amongst all participants between task 1 and 2 (p<0.001). This is the largest study to date validating the use of simulation in HA training. These results confirm significant construct and face validity, excellent agreement between objective measures and ASSET scores, significant improvement in skill with continued use and recommend VR simulation to be a valuable asset in HA training for all grades


The Bone & Joint Journal
Vol. 101-B, Issue 12 | Pages 1585 - 1592
1 Dec 2019
Logishetty K Rudran B Cobb JP

Aims. Arthroplasty skills need to be acquired safely during training, yet operative experience is increasingly hard to acquire by trainees. Virtual reality (VR) training using headsets and motion-tracked controllers can simulate complex open procedures in a fully immersive operating theatre. The present study aimed to determine if trainees trained using VR perform better than those using conventional preparation for performing total hip arthroplasty (THA). Patients and Methods. A total of 24 surgical trainees (seven female, 17 male; mean age 29 years (28 to 31)) volunteered to participate in this observer-blinded 1:1 randomized controlled trial. They had no prior experience of anterior approach THA. Of these 24 trainees, 12 completed a six-week VR training programme in a simulation laboratory, while the other 12 received only conventional preparatory materials for learning THA. All trainees then performed a cadaveric THA, assessed independently by two hip surgeons. The primary outcome was technical and non-technical surgical performance measured by a THA-specific procedure-based assessment (PBA). Secondary outcomes were step completion measured by a task-specific checklist, error in acetabular component orientation, and procedure duration. Results. VR-trained surgeons performed at a higher level than controls, with a median PBA of Level 3a (procedure performed with minimal guidance or intervention) versus Level 2a (guidance required for most/all of the procedure or part performed). VR-trained surgeons completed 33% more key steps than controls (mean 22 (. sd. 3) vs 12 (. sd. 3)), were 12° more accurate in component orientation (mean error 4° (. sd. 6°) vs 16° (. sd. 17°)), and were 18% faster (mean 42 minutes (. sd. 7) vs 51 minutes (. sd. 9)). Conclusion. Procedural knowledge and psychomotor skills for THA learned in VR were transferred to cadaveric performance. Basic preparatory materials had limited value for trainees learning a new technique. VR training advanced trainees further up the learning curve, enabling highly precise component orientation and more efficient surgery. VR could augment traditional surgical training to improve how surgeons learn complex open procedures. Cite this article: Bone Joint J 2019;101-B:1585–1592


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_6 | Pages 18 - 18
1 May 2019
Logishetty K Rudran B Gofton W Beaule P Field R Cobb J
Full Access

Background. For total hip arthroplasty (THA), cognitive training prior to performing real surgery may be an effective adjunct alongside simulation to shorten the learning curve. This study sought to create a cognitive training tool to perform direct anterior approach THA, validated by expert surgeons; and test its use as a training tool compared to conventional material. Methods. We employed a modified Delphi method with four expert surgeons from three international centres of excellence. Surgeons were independently observed performing THA before undergoing semi-structured cognitive task analysis (CTA) before completing successive rounds of electronic surveys until consensus. The agreed CTA was incorporated into a mobile and web-based platform. Forty surgical trainees (CT1-ST4) were randomised to CTA-training or a digital op-tech with surgical videos, before performing a simulated DAA THA in a validated fully-immersive virtual reality simulator. Results. Experts reached 100% consensus after five rounds. They defined THA in 46 steps and 52 decision points in 8 distinct procedural phases. Each phase comprised of a set of actions, cognitive demands, and critical errors and strategies. This CTA was mapped onto an open-access web-based learning tool [1]. Surgeons who prepared with CTA performed a simulated THA more efficiently (Time: 26 vs. 36 minutes and Procedural steps: 64 vs. 78), with fewer errors in instrument selection (22 vs 34 instances) and help required (6 vs. 19 instances), and with more accuracy (acetabular cup inclination error: 7° vs. 12°, anteversion error: 11° vs 19°) than those who prepared with conventional material. Discussion. This is the first validated CTA tool for arthroplasty. It provides structure for competency-based learning of this complex procedure. It is more effective at preparing orthopaedic trainees for a new procedure than conventional materials, for learning sequence, instrumentation and motor skills. Implications. Cognitive training combines education on decision making, knowledge and technical skill. It is a validated educational tool to upskill surgeons to perform hip arthroplasty and could replace current training and preparation methods for junior surgeons


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_6 | Pages 27 - 27
1 May 2019
Logishetty K Rudran B Gofton W Beaule P Cobb J
Full Access

Background. Virtual Reality (VR) uses headsets and motion-tracked controllers so surgeons can perform simulated total hip arthroplasty (THA) in a fully-immersive, interactive 3D operating theatre. The aim of this study was to investigate the effect of laboratory-based VR training on the ability of surgical trainees to perform direct anterior approach THA on cadavers. Methods. Eighteen surgical trainees (CT1-ST4) with no prior experience of direct anterior approach (DAA) THA completed an intensive 1-day course (lectures, dry-bone workshops and technique demonstrations). They were randomised to either a 5-week protocol of VR simulator training or conventional preparation (operation manuals and observation of real surgery). Trainees performed DAA-THA on cadaveric hips, assisted by a passive scrub nurse and surgical assistant. Performance was measured on the Intercollegiate Surgical Curriculum Project (ISCP) procedure-based assessment (PBA), on a 9-point global summary score (Table 1). This was independently assessed by 2 hip surgeons blinded to group allocation. The secondary outcome measure was error in cup orientation from a predefined target (40° inclination and 20° anteversion). Results. Surgeons trained using VR performed a cadaveric DAA-THA significantly better than those using conventional preparation, as assessed by acetabular cup orientation (p<0.001) and using the ISCP-PBA. Two VR surgeons achieved Level 3b, 6 were graded at Level 3a, and 1 was graded at Level 2b. Six non-VR surgeons achieved Level 2a and 3 were graded at Level 1b. Discussion. These data demonstrate transfer of procedural knowledge and psychomotor skills learnt from VR to a real-world setting. Conventional preparation had limited value for novice surgeons learning arthroplasty. VR training advanced them further up the learning curve. Implications. Virtual reality can augment surgical training for open procedures in orthopaedics curve, so opportunities in real surgery can be maximised. This has implications for how surgical training is delivered for surgeons learning a new, complex procedure. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_10 | Pages 15 - 15
1 Aug 2021
Fowler T Blom A Reed M Aquilina A Sayers A Whitehouse M
Full Access

Total hip replacements (THRs) are performed by surgeons at various stages in their training, with varying levels of senior supervision. There is a balance between protecting training opportunities for the next generation of surgeons, while limiting the exposure of patients to unnecessary risk during the training process. The aim of this study was to examine the association between surgeon grade, the senior supervision of trainees, and the risk of revision following THR. We included 603 474 primary THRs recorded in the National Joint Registry for England, Wales, Northern Ireland, and the Isle of Man (NJR) between 2003 and 2016 for an indication of osteoarthritis. Exposures were the grade of the surgeon (consultant or trainee), and whether trainees were supervised by a scrubbed consultant or not. Outcomes were all-cause revision, the indication for revision, and the temporal variation in risk of revision (all up to 10 years). Net failure was calculated using Kaplan-Meier analysis and adjusted analyses used Cox regression and flexible parametric survival analysis (adjusted for patient, operative, and unit level factors). There was no association between surgeon grade and all-cause revision up to 10 years (crude hazard ratio (HR) 0·999, 95% confidence interval (CI) 0.936–1.065; p=0.966); a finding which persisted with adjusted analysis. Adjusted analysis demonstrated an association between trainees operating without supervision by a scrubbed consultant and an increase in all-cause revision (HR 1.100, 95% CI 1.002–1.207; p=0.045). There was an association between the trainee-performed THRs and revision due to instability (crude HR 1.143, 95% CI, 1.007–1.298; p=0.039). However, this was not observed in fully adjusted models, or when trainees were supervised by a scrubbed consultant. Within the current training system in the United Kingdom, trainees achieve comparable outcomes to consultant surgeons when supervised by a scrubbed consultant. Revision rates are higher when trainees are not supervised by a scrubbed consultant but remain within internationally recognised acceptable limits


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_5 | Pages 20 - 20
1 Jul 2020
Fowler T Aquilina A Blom A Sayers A Whitehouse M
Full Access

Aims. The aim of this study was to conduct evidence synthesis on the available published literature of the impact of the training status of the operating surgeon (trainee vs. consultant) on the survival and revision rate of primary hip and knee replacements. Patients and Methods. We conducted a systematic review according to Cochrane guidelines. Separate searches were performed for hip and knee replacements, with meta-analysis and presentation of results in parallel. We searched MEDLINE and Embase databases from inception to 17 September 2019 and included controlled trials and cohort studies reporting implant survival estimates, or revision rates of hip and knee replacements according to the grade of the operating surgeon. This study was registered with PROSPERO (CRD42019150494). Results. 8 studies (5 hip papers and 3 knee papers) met the inclusion criteria. There was no significant difference in the survival estimates for total hip replacements (THRs) performed by trainees compared to consultants at 5-years follow-up (97.9% vs 98.1%, p = 0.74). Furthermore, there was no significant difference in the revision rate of THRs performed by trainees and consultants at both 5 and 10-year intervals of follow-up (relative risk [RR]: 5yrs = 0.88 (95% CI: 0.46, 1.70; P = 0.71); 10yrs = 0.68 (95% CI: 0.37, 1.26; P = 0.22)). There was no significant difference in the survival estimates at 10-years for total knee replacements (TKRs) performed by trainees compared to consultants (96.2% vs 95.1%, p=0.49). Conclusion. There is no evidence in the existing literature that trainee surgeons have worse outcomes than their consultant colleagues, in terms of the survival, or rate of revision of hip and knee replacements at 5–10 years follow-up. This may mean that there is genuinely no difference or that, in the context of contemporary training programmes, appropriate case-mix selection and supervision of trainees is currently employed


The Bone & Joint Journal
Vol. 98-B, Issue 3 | Pages 301 - 306
1 Mar 2016
Reidy MJ Faulkner A Shitole B Clift B

Aims

The long-term functional outcome of total hip arthroplasty (THA) performed by trainees is not known. A multicentre retrospective study of 879 THAs was undertaken to investigate any differences in outcome between those performed by trainee surgeons and consultants.

Patients and Methods

A total of 879 patients with a mean age of 69.5 years (37 to 94) were included in the study; 584 THAs (66.4%) were undertaken by consultants, 138 (15.7%) by junior trainees and 148 (16.8%) by senior trainees. Patients were scored using the Harris Hip Score (HHS) pre-operatively and at one, three, five, seven and ten years post-operatively. Surgical outcome, complications and survival were compared between groups. The effect of supervision was determined by comparing supervised and unsupervised trainees. A primary univariate analysis was used to select variables for inclusion in multivariate analysis.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_11 | Pages 25 - 25
1 Jun 2016
Ferguson D Henckel J Holme T Berber R Matthews W Carrington R Miles J Mitchell P Jagiello J Skinner J Hart A
Full Access

Introduction. Surgical simulation and ‘virtual’ surgical tools are becoming recognised as essential aids for speciality training in Trauma & Orthopaedics, as evidenced by the BOA T&O Simulation Curriculum 2013. 1,2. The current generation of hip arthroplasty simulators, including cadaveric workshops, offers the trainee limited exposure to reproducible real life bony pathology. We developed and implemented a novel training course using pathological dry bone models generated from real patient cases to support senior orthopaedic trainees and new consultants in developing knowledge and hands on skills in complex total hip arthroplasty. Patient/Materials & Methods. A two-day programme for 20 delegates was held at a specialist centre for hip arthroplasty. Three complex femoral and three complex acetabular cases were identified from patients seen at our centre. 3D models were printed from CT scans and dry bone models produced (using a mold-casting process), enabling each delegate to have a copy of each case at a cost of around £30 per case per delegate (Figure 1). The faculty was led by 4 senior Consultant revision hip surgeons. A computerised digitising arm was used to measure cup positioning and femoral stem version giving candidates immediate objective feedback (Figure 2). Candidate experience and satisfaction with the course and models was evaluated with a standardised post-course questionnaire. Results. 91% of respondents rated overall course satisfaction good or very good with 100% stating learning objectives were met or exceeded. 100% of delegates rated the bone model workshop cases as good or very good for the acetabular course, and 88% for the femoral course. Discussion. This course has been shown to enhance learning of surgical techniques and skills in complex hip surgery. Conclusion. We have developed a novel, effective and low cost training simulation method using pathological dry bone models for complex and revision hip arthroplasty which could be developed for other anatomical areas


The Bone & Joint Journal
Vol. 106-B, Issue 4 | Pages 336 - 343
1 Apr 2024
Haertlé M Becker N Windhagen H Ahmad SS

Aims. Periacetabular osteotomy (PAO) is widely recognized as a demanding surgical procedure for acetabular reorientation. Reports about the learning curve have primarily focused on complication rates during the initial learning phase. Therefore, our aim was to assess the PAO learning curve from an analytical perspective by determining the number of PAOs required for the duration of surgery to plateau and the accuracy to improve. Methods. The study included 118 consecutive PAOs in 106 patients. Of these, 28 were male (23.7%) and 90 were female (76.3%). The primary endpoint was surgical time. Secondary outcome measures included radiological parameters. Cumulative summation analysis was used to determine changes in surgical duration. A multivariate linear regression model was used to identify independent factors influencing surgical time. Results. The learning curve in this series was 26 PAOs in a period of six months. After 26 PAO procedures, a significant drop in surgical time was observed and a plateau was also achieved. The mean duration of surgery during the learning curve was 103.8 minutes (SD 33.2), and 69.7 minutes (SD 18.6) thereafter (p < 0.001). Radiological correction of acetabular retroversion showed a significant improvement after having performed a total of 93 PAOs, including anteverting PAOs on 35 hips with a retroverted acetabular morphology (p = 0.005). Several factors were identified as independent variables influencing duration of surgery, including patient weight (β = 0.5 (95% confidence interval (CI) 0.2 to 0.7); p < 0.001), learning curve procedure phase of 26 procedures (β = 34.0 (95% CI 24.3 to 43.8); p < 0.001), and the degree of lateral correction expressed as the change in the lateral centre-edge angle (β = 0.7 (95% CI 0.001 to 1.3); p = 0.048). Conclusion. The learning curve for PAO surgery requires extensive surgical training at a high-volume centre, with a minimum of 50 PAOs per surgeon per year. This study defined a cut-off value of 26 PAO procedures, after which a significant drop in surgical duration occurred. Furthermore, it was observed that a retroverted morphology of the acetabulum required a greater number of procedures to acquire proficiency in consistently eliminating the crossover sign. These findings are relevant for fellows and fellowship programme directors in establishing the extent of training required to impart competence in PAO. Cite this article: Bone Joint J 2024;106-B(4):336–343


Bone & Joint Open
Vol. 2, Issue 11 | Pages 909 - 920
10 Nov 2021
Smith T Clark L Khoury R Man M Hanson S Welsh A Clark A Hopewell S Pfeiffer K Logan P Crotty M Costa M Lamb SE

Aims. This study aims to assess the feasibility of conducting a pragmatic, multicentre randomized controlled trial (RCT) to test the clinical and cost-effectiveness of an informal caregiver training programme to support the recovery of people following hip fracture surgery. Methods. This will be a mixed-methods feasibility RCT, recruiting 60 patients following hip fracture surgery and their informal caregivers. Patients will be randomized to usual NHS care, versus usual NHS care plus a caregiver-patient dyad training programme (HIP HELPER). This programme will comprise of three, one-hour, one-to-one training sessions for the patient and caregiver, delivered by a nurse, physiotherapist, or occupational therapist. Training will be delivered in the hospital setting pre-patient discharge. It will include practical skills for rehabilitation such as: transfers and walking; recovery goal setting and expectations; pacing and stress management techniques; and introduction to the HIP HELPER Caregiver Workbook, which provides information on recovery, exercises, worksheets, and goal-setting plans to facilitate a ‘good’ recovery. After discharge, patients and caregivers will be supported in delivering rehabilitation through three telephone coaching sessions. Data, collected at baseline and four months post-randomization, will include: screening logs, intervention logs, fidelity checklists, quality assurance monitoring visit data, and clinical outcomes assessing quality of life, physical, emotional, adverse events, and resource use outcomes. The acceptability of the study intervention and RCT design will be explored through qualitative methods with 20 participants (patients and informal caregivers) and 12 health professionals. Discussion. A multicentre recruitment approach will provide greater external validity across population characteristics in England. The mixed-methods approach will permit in-depth examination of the intervention and trial design parameters. The findings will inform whether and how a definitive trial may be undertaken to test the effectiveness of this caregiver intervention for patients after hip fracture surgery. Cite this article: Bone Jt Open 2021;2(11):909–920


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_11 | Pages 32 - 32
7 Jun 2023
Howgate D Roberts PG Palmer A Price A Taylor A Rees J Kendrick B
Full Access

Primary total hip replacement (THR) is a successful and common operation which orthopaedic trainees must demonstrate competence in prior to completion of training. This study aimed to determine the impact of operating surgeon grade and level of supervision on the incidence of 1-year patient mortality and all-cause revision following elective primary THR in a large UK training centre. National Joint Registry (NJR) data for all elective primary THR performed in a single University Teaching Hospital from 2005–2020 were used, with analysis performed on the 15-year dataset divided into 5-year temporal periods (B1 2005–2010, B2 2010–2015, B3 2015–2020). Outcome measures were mortality and revision surgery at one year, in relation to lead surgeon grade, and level of supervision for trainee-led operations. 9999 eligible primary THR were undertaken, of which 5526 (55.3%) were consultant led (CL), and 4473 (44.7%) trainees led (TL). Of TL, 2404 (53.7%) were non-consultant supervised (TU), and 2069 (46.3%) consultant supervised (TS). The incidence of 1-year patient mortality was 2.05% (n=205), and all-cause revision was 1.11% (n=111). There was no difference in 1-year mortality between TL (n=82, 1.8%) and CL (n=123, 2.2%) operations (p=0.20, OR 0.78, CI 0.55–1.10). The incidence of 1-year revision was not different for TL (n=56, 1.3%) and CL (n=55, 1.0%) operations (p=0.15, OR 1.37, CI 0.89–2.09). Overall, there was no temporal change for either outcome measure between TL or CL operations. A significant increase in revision within 1-year was observed in B3 between TU (n=17, 2.7%) compared to CL (n=17, 1.0%) operations (p=0.005, OR 2.81, CI 1.35–5.87). We found no difference in 1-year mortality or 1-year all-cause revision rate between trainee-led primary THR and consultant-led operations over the entire fifteen-year period. However, unsupervised trainee led THR in the most recent 5-year block (2015–2020) has a significantly increased risk of early revision, mainly due to instability and prosthetic joint infection. This suggests that modern surgical training is having a detrimental effect on THR patient outcomes. More research is needed to understand the reasons if this trend is to be reversed


The Bone & Joint Journal
Vol. 104-B, Issue 3 | Pages 341 - 351
1 Mar 2022
Fowler TJ Aquilina AL Reed MR Blom AW Sayers A Whitehouse MR

Aims. Total hip arthroplasties (THAs) are performed by surgeons at various stages in training with varying levels of supervision, but we do not know if this is safe practice with comparable outcomes to consultant-performed THA. Our aim was to examine the association between surgeon grade, the senior supervision of trainees, and the risk of revision following THA. Methods. We performed an observational study using National Joint Registry (NJR) data. We included adult patients who underwent primary THA for osteoarthritis, recorded in the NJR between 2003 and 2016. Exposures were operating surgeon grade (consultant or trainee) and whether or not trainees were directly supervised by a scrubbed consultant. Outcomes were all-cause revision and the indication for revision up to ten years. We used methods of survival analysis, adjusted for patient, operation, and healthcare setting factors. Results. We included 603,474 THAs, of which 58,137 (9.6%) procedures were performed by a trainee. There was no association between surgeon grade and all-cause revision up to ten years (crude hazard ratio (HR) 1.00 (95% confidence interval (CI) 0.94 to 1.07); p = 0.966), a finding which persisted with adjusted analysis. Fully adjusted analysis demonstrated an association between trainees operating without scrubbed consultant supervision and an increased risk of all-cause revision (HR 1.10 (95% CI 1.00 to 1.21); p = 0.045). There was an association between trainee-performed THA and revision for instability (HR 1.14 (95% CI 1.01 to 1.30); p = 0.039). However, this was not observed in adjusted models, or when trainees were supervised by a scrubbed consultant. Conclusion. Within the current training system in England and Wales, appropriately supervised trainees achieve comparable THA survival to consultants. Trainees who are supervised by a scrubbed consultant achieve superior outcomes compared to trainees who are not supervised by a scrubbed consultant, particularly in terms of revision for instability. Cite this article: Bone Joint J 2022;104-B(3):341–351


To examine whether Natural Language Processing (NLP) using a state-of-the-art clinically based Large Language Model (LLM) could predict patient selection for Total Hip Arthroplasty (THA), across a range of routinely available clinical text sources. Data pre-processing and analyses were conducted according to the Ai to Revolutionise the patient Care pathway in Hip and Knee arthroplasty (ARCHERY) project protocol (. https://www.researchprotocols.org/2022/5/e37092/. ). Three types of deidentified Scottish regional clinical free text data were assessed: Referral letters, radiology reports and clinic letters. NLP algorithms were based on the GatorTron model, a Bidirectional Encoder Representations from Transformers (BERT) based LLM trained on 82 billion words of de-identified clinical text. Three specific inference tasks were performed: assessment of the base GatorTron model, assessment after model-fine tuning, and external validation. There were 3911, 1621 and 1503 patient text documents included from the sources of referral letters, radiology reports and clinic letters respectively. All letter sources displayed significant class imbalance, with only 15.8%, 24.9%, and 5.9% of patients linked to the respective text source documentation having undergone surgery. Untrained model performance was poor, with F1 scores (harmonic mean of precision and recall) of 0.02, 0.38 and 0.09 respectively. This did however improve with model training, with mean scores (range) of 0.39 (0.31–0.47), 0.57 (0.48–0.63) and 0.32 (0.28–0.39) across the 5 folds of cross-validation. Performance deteriorated on external validation across all three groups but remained highest for the radiology report cohort. Even with further training on a large cohort of routinely collected free-text data a clinical LLM fails to adequately perform clinical inference in NLP tasks regarding identification of those selected to undergo THA. This likely relates to the complexity and heterogeneity of free-text information and the way that patients are determined to be surgical candidates


Bone & Joint Research
Vol. 13, Issue 4 | Pages 193 - 200
23 Apr 2024
Reynolds A Doyle R Boughton O Cobb J Muirhead-Allwood S Jeffers J

Aims. Manual impaction, with a mallet and introducer, remains the standard method of installing cementless acetabular cups during total hip arthroplasty (THA). This study aims to quantify the accuracy and precision of manual impaction strikes during the seating of an acetabular component. This understanding aims to help improve impaction surgical techniques and inform the development of future technologies. Methods. Posterior approach THAs were carried out on three cadavers by an expert orthopaedic surgeon. An instrumented mallet and introducer were used to insert cementless acetabular cups. The motion of the mallet, relative to the introducer, was analyzed for a total of 110 strikes split into low-, medium-, and high-effort strikes. Three parameters were extracted from these data: strike vector, strike offset, and mallet face alignment. Results. The force vector of the mallet strike, relative to the introducer axis, was misaligned by an average of 18.1°, resulting in an average wasted strike energy of 6.1%. Furthermore, the mean strike offset was 19.8 mm from the centre of the introducer axis and the mallet face, relative to the introducer strike face, was misaligned by a mean angle of 15.2° from the introducer strike face. Conclusion. The direction of the impact vector in manual impaction lacks both accuracy and precision. There is an opportunity to improve this through more advanced impaction instruments or surgical training. Cite this article: Bone Joint Res 2024;13(4):193–200


Bone & Joint Open
Vol. 1, Issue 9 | Pages 594 - 604
24 Sep 2020
James HK Pattison GTR Griffin J Fisher JD Griffin DR

Aims. To develop a core outcome set of measurements from postoperative radiographs that can be used to assess technical skill in performing dynamic hip screw (DHS) and hemiarthroplasty, and to validate these against Van der Vleuten’s criteria for effective assessment. Methods. A Delphi exercise was undertaken at a regional major trauma centre to identify candidate measurement items. The feasibility of taking these measurements was tested by two of the authors (HKJ, GTRP). Validity and reliability were examined using the radiographs of operations performed by orthopaedic resident participants (n = 28) of a multicentre randomized controlled educational trial (ISRCTN20431944). Trainees were divided into novice and intermediate groups, defined as having performed < ten or ≥ ten cases each for DHS and hemiarthroplasty at baseline. The procedure-based assessment (PBA) global rating score was assumed as the gold standard assessment for the purposes of concurrent validity. Intra- and inter-rater reliability testing were performed on a random subset of 25 cases. Results. In total, 327 DHS and 248 hemiarthroplasty procedures were performed by 28 postgraduate year (PGY) 3 to 5 orthopaedic trainees during the 2014 to 2015 surgical training year at nine NHS hospitals in the West Midlands, UK. Overall, 109 PBAs were completed for DHS and 80 for hemiarthroplasty. Expert consensus identified four ‘final product analysis’ (FPA) radiological parameters of technical success for DHS: tip-apex distance (TAD); lag screw position in the femoral head; flushness of the plate against the lateral femoral cortex; and eight-cortex hold of the plate screws. Three parameters were identified for hemiarthroplasty: leg length discrepancy; femoral stem alignment; and femoral offset. Face validity, content validity, and feasibility were excellent. For all measurements, performance was better in the intermediate compared with the novice group, and this was statistically significant for TAD (p < 0.001) and femoral stem alignment (p = 0.023). Concurrent validity was poor when measured against global PBA score. This may be explained by the fact that they are measuring difference facets of competence. Intra-and inter-rater reliability were excellent for TAD, moderate for lag screw position (DHS), and moderate for leg length discrepancy (hemiarthroplasty). Use of a large multicentre dataset suggests good generalizability of the results to other settings. Assessment using FPA was time- and cost-effective compared with PBA. Conclusion. Final product analysis using post-implantation radiographs to measure technical skill in hip fracture surgery is feasible, valid, reliable, and cost-effective. It can complement traditional workplace-based assessment for measuring performance in the real-world operating room . It may have particular utility in competency-based training frameworks and for assessing skill transfer from the simulated to live operating theatre. Cite this article: Bone Joint Open 2020;1-9:594–604


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_6 | Pages 59 - 59
2 May 2024
Adla SR Ameer A Silva MD Unnithan A
Full Access

Arthroplasties are widely performed to improve mobility and quality of life for symptomatic knee/hip osteoarthritis patients. With increasing rates of Total Joint Replacements in the United Kingdom, predicting length of stay is vital for hospitals to control costs, manage resources, and prevent postoperative complications. A longer Length of stay has been shown to negatively affect the quality of care, outcomes and patient satisfaction. Thus, predicting LOS enables us to make full use of medical resources. Clinical characteristics were retrospectively collected from 1,303 patients who received TKA and THR. A total of 21 variables were included, to develop predictive models for LOS by multiple machine learning (ML) algorithms, including Random Forest Classifier (RFC), K-Nearest Neighbour (KNN), Extreme Gradient Boost (XgBoost), and Na¯ve Bayes (NB). These models were evaluated by the receiver operating characteristic (ROC) curve for predictive performance. A feature selection approach was used to identify optimal predictive factors. Based on the ROC of Training result, XgBoost algorithm was selected to be applied to the Test set. The areas under the ROC curve (AUCs) of the 4 models ranged from 0.730 to 0.966, where higher AUC values generally indicate better predictive performance. All the ML-based models performed better than conventional statistical methods in ROC curves. The XgBoost algorithm with 21 variables was identified as the best predictive model. The feature selection indicated the top six predictors: Age, Operation Duration, Primary Procedure, BMI, creatinine and Month of Surgery. By analysing clinical characteristics, it is feasible to develop ML-based models for the preoperative prediction of LOS for patients who received TKA and THR, and the XgBoost algorithm performed the best, in terms of accuracy of predictive performance. As this model was originally crafted at Ashford and St. Peters Hospital, we have naturally named it as THE ASHFORD OUTCOME


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_11 | Pages 34 - 34
7 Jun 2023
Board T Powell R Davies A Coffey T Wylde V Taylor T Hickey H Gornall M Jackson R Dalal G Eden M Wilson M Divecha H
Full Access

Studies have shown that 10–30% patients do not achieve optimal function outcomes after total hip replacement (THR). High quality randomised controlled trials (RCTs) evaluating the clinical and cost-effectiveness of techniques to improve functional outcomes after THR are lacking. We performed this study to evaluate the feasibility of a RCT comparing patient-reported functional outcomes after hybrid or fully cemented THR (ISRCTN11097021). Patients were recruited from two centres and randomised to receive either a fully cemented or hybrid THR. Data collection included Patient Reported Outcome Measures (PROMs), non-serious adverse events of special interest (AESI), serious adverse device effects (SADE) and NHS resource use. Qualitative interviews were undertaken to understand a) patient experiences of study processes and their reasons for taking part or not, and b) to understand surgeons’ perceptions of the study, factors affecting willingness to participate, and barriers to implementation of the future RCT findings. The target of 40 patients were successfully recruited for the feasibility RCT; the ratio of successful recruitment to eligible patients was 0.61 across both sites. Treatment crossovers occurred in four patients, all related to bone quality. Four patients were withdrawn due to not undergoing surgery within the study window because of the pandemic. Follow-up was 100% and PROMs were completed by all patients at all time points. The feasibility of conducting a within-trial cost-utility analysis was demonstrated. Interviews were conducted with 27 patients and 16 surgeons. Patients and surgeons generally found the study procedures acceptable and workable. Some declined participation because they did not want treatment allocated at random, or because blinding was off-putting. Surgeons’ perceptions of equipoise varied, and implementation of findings from the future RCT would need to recognise the ‘craft’ nature of surgery and the issue of training. We conclude that a full RCT with economic analysis will be both feasible and practicable, although mechanisms to safely implement potential changes to practice because of RCT findings may need consideration by the wider arthroplasty community