Abstract. Introduction. Skeletal muscle wasting is an important clinical issue following acute
Introduction and Objective. Up to 30% of thoracolumbar (TL) fractures are missed in the emergency room. Failure to identify these fractures can result in neurological injuries up to 51% of the casesthis article aimed to clarify the incidence and risk factors of traumatic fractures in China. The China National Fracture Study (CNFS. Obtaining sagittal and anteroposterior radiographs of the TL spine are the first diagnostic step when suspecting a
Osteoarthritis (OA) is the most common musculoskeletal disease in the EU and is characterized by cartilage degeneration, pain and restricted movement. Post-Traumatic OA (PTOA) is a specific disease subset that occurs subsequent to
Acute multiligament knee injuries (MLKI) are rare, high energy
Post-traumatic arthritis is a frequent consequence of articular fracture. The mechanisms leading to its development after such injuries have not been clearly delineated. A potential contributing factor is decreased viability of the articular chondrocytes. The object of this study was to characterise the regional variation in the viability of chondrocytes following joint trauma. A total of 29 osteochondral fragments from
Bone loss continues to be a clinical and therapeutic problem. Bone reconstruction of osseous defects is a challenge after fracture and
Significance. Acute compartment syndrome (ACS) occurs after muscle injury and is characterised by increased pressure in the muscle compartment that can result in devastating complications if not diagnosed and treated appropriately. ACS is currently confirmed by repeated needle sticks to measure the compartment pressure using a hand-held compartment pressure monitor. This approach is often not reproducible and is not appropriate for continuous monitoring. To address the shortcomings of currently available technology we are developing an implantable micro-device that will measure compartment pressure directly and continuously over the 24 hours critical period following injury using a radio frequency identification (RFID) platform integrated with a MEMS capacitive pressure sensor. Methods. The prototype implantable device measuring 3mmx3mm consists of a capacitive pressure sensor, a sensor readout circuitry, an antenna and a radio frequency reader. A prototype sensor was packaged in Silicone gel (MED-6640, Nusil Technology LLC) for ex vivo and in vivo testing in three compartment models. First, it was tested ex vivo in an airtight vessel using a blood pressure monitor to pump air and increase the pressure inside the vessel. Second, it was implanted in a muscle compartment of a fresh porcine hind limb and an infusion pump with normal saline was used to raise the tissue pressure. Third, it was implanted in the posterior thigh muscle of a rat where the pressure was increased by applying a tourniquet around the thigh. The readings were compared with those from a hand-held Stryker Intra-compartmental Pressure Monitor System used in the trauma room. Results. The sensor reading from the radio frequency reader software interface in all three models showed good linearity against the pressure applied to the compartment. Conclusion. The successful completion of this project will lead to the development of an implantable miniaturised wireless pressure sensor microsystem capable of measuring tissue compartment pressures in the critical period after
To collate and present epidemiological data collected by Scottish National Brachial Injury Service over the past decade. The Brachial Plexus Injury Service is based at the Victoria Infirmary, Glasgow and has been a designated National Service since 2004. It provides an integrated multidisciplinary service for traumatic brachial plexus injury and plexus tumours. The Service maintains an active archive recording details of all clinical referrals and procedures conducted by the Service over the past decade. The data presented here was derived from analysis of this database and information contained in the National Brachial Plexus Injury Service Annual Report 2010/11 & 2011/12. Data shows that there has been a steady rate in the number of referrals to the Service, particularly since 2004, with an average of 50 cases referred per annum. Of these, approximately 25% required formal surgical exploration for
Meniscal tears commonly occur after a
In this study, we compared the pain behaviour and osteoarthritis (OA) progression between anterior cruciate ligament transection (ACLT) and osteochondral injury in surgically-induced OA rat models. OA was induced in the knee joints of male Wistar rats using transection of the ACL or induction of osteochondral injury. Changes in the percentage of high limb weight distribution (%HLWD) on the operated hind limb were used to determine the pain behaviour in these models. The development of OA was assessed and compared using a histological evaluation based on the Osteoarthritis Research Society International (OARSI) cartilage OA histopathology score.Objectives
Methods
Regenerative medicine is an emerging field aimed at the repair and regeneration of various tissues. To this end, cytokines (CKs), growth factors (GFs), and stem/progenitor cells have been applied in this field. However, obtaining and preparing these candidates requires invasive, costly, and time-consuming procedures. We hypothesised that skeletal muscle could be a favorable candidate tissue for the concept of a point-of-care approach. The purpose of this study was to characterize and confirm the biological potential of skeletal muscle supernatant for use in regenerative medicine. Semitendinosus muscle was used after harvesting tendon from patients who underwent anterior cruciate ligament reconstructions. A total of 500 milligrams of stripped muscle was minced and mixed with 1 mL of saline. The collected supernatant was analysed by enzyme-linked immunosorbent assay (ELISA) and flow cytometry. The biological effects of the supernatant on cell proliferation, osteogenesis, and angiogenesis in vitro were evaluated using human mesenchymal stem cells (hMSCs) and human umbilical cord vein endothelial cells (HUVECs).Objectives
Methods
The aim of this study was to establish a classification system for the acromioclavicular joint using cadaveric dissection and radiological analyses of both reformatted computed tomographic scans and conventional radiographs centred on the joint. This classification should be useful for planning arthroscopic procedures or introducing a needle and in prospective studies of biomechanical stresses across the joint which may be associated with the development of joint pathology. We have demonstrated three main three-dimensional morphological groups namely flat, oblique and curved, on both cadaveric examination and radiological assessment. These groups were recognised in both the coronal and axial planes and were independent of age.
We have developed an animal model to examine the formation of heterotopic ossification using standardised muscular damage and implantation of a beta-tricalcium phosphate block into a hip capsulotomy wound in Wistar rats. The aim was to investigate how cells originating from drilled femoral canals and damaged muscles influence the formation of heterotopic bone. The femoral canal was either drilled or left untouched and a tricalcium phosphate block, immersed either in saline or a rhBMP-2 solution, was implanted. These implants were removed at three and 21 days after the operation and examined histologically, histomorphometrically and immunohistochemically. Bone formation was seen in all implants in rhBMP-2-immersed, whereas in those immersed in saline the process was minimal, irrespective of drilling of the femoral canals. Bone mineralisation was somewhat greater in the absence of drilling with a mean mineralised volume to mean total volume of 18.2% ( Our findings suggest that osteoinductive signalling is an early event in the formation of ectopic bone. If applicable to man the results indicate that careful tissue handling is more important than the prevention of the dissemination of bone cells in order to avoid heterotopic ossification.
The stress response to trauma is the summation of the physiological response to the injury (the ‘first hit’) and by the response to any on-going physiological disturbance or subsequent trauma surgery (the ‘second hit’). Our animal model was developed in order to allow the study of each of these components of the stress response to major trauma. High-energy, comminuted fracture of the long bones and severe soft-tissue injuries in this model resulted in a significant tropotropic (depressor) cardiovascular response, transcardiac embolism of medullary contents and activation of the coagulation system. Subsequent stabilisation of the fractures using intramedullary nails did not significantly exacerbate any of these responses.