This review provides a concise outline of the advances made in the care of patients and to the quality of life after a
Aims. The aim of this study was to determine whether early surgical treatment results in better neurological recovery 12 months after injury than late surgical treatment in patients with acute
Purpose: Prospective Observational Population Study to describe the incidence, demographics and pattern of spinal cord injury in British Columbia, Canada, for 10 years to 2004. Method: Systematic analysis of prospectively collected spine registry data (Vertebase) at Vancouver General Hospital, B.C., Canada from 1995–2004. Results: During the 10-year study period the 938 patients were admitted with a
Charcot spondyloarthropathy is one of the late complications of
Acute spinal cord injury (SCI) is most often secondary to trauma, and frequently presents with associated injuries. A neurological examination is routinely performed during trauma assessment, including through Advanced Trauma Life Support (ATLS). However, there is no standard neurological assessment tool specifically used for trauma patients to detect and characterize SCI during the initial evaluation. The International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) is the most comprehensive and popular tool for assessing SCI, but it is not adapted to the acute trauma patients such that it is not routinely used in that setting. Therefore, the objective is to develop a new tool that can be used routinely in the initial evaluation of trauma patients to detect and characterize acute SCI, while preserving basic principles of the ISNCSCI. The completion rate of the ISCNSCI during the initial evaluation after an acute traumatic SCI was first estimated. Using a modified Delphi technique, we designed the Montreal Acute Classification of Spinal Cord Injuries (MAC-SCI), a new tool to detect and characterize the completeness (grade) and level of SCI in the polytrauma patient. The ability of the MAC-SCI to detect and characterize SCI was validated in a cohort of 35 individuals who have sustained an acute traumatic SCI. The completeness and neurological level of injury (NLI) were assessed by two independent assessors using the MAC-SCI, and compared to those obtained with the ISNCSCI. Only 33% of patients admitted after an acute traumatic SCI had a complete ISNCSCI performed at initial presentation. The MAC-SCI includes 53 of the 134 original elements of the ISNCSCI which is 60% less. There was a 100% concordance between the severity grade derived from the MAC-SCI and from the ISNCSCI. Concordance of the NLI within two levels of that obtained from the ISNCSCI was observed in 100% of patients with the MAC-SCI and within one level in 91% of patients. The ability of the MAC-SCI to discriminate between cervical (C0 to C7) vs. thoracic (T1 to T9) vs. thoraco-lumbar (T10 to L2) vs. lumbosacral (L3 to S5) injuries was 100% with respect to the ISNCSCI. The rate of completion of the ISNCSCI is low at initial presentation after an acute traumatic SCI. The MAC-SCI is a streamlined tool proposed to detect and characterize acute SCI in polytrauma patients, that is specifically adapted to the acute trauma setting. It is accurate for determining the completeness of the SCI and localize the NLI (cervical vs. thoracic vs. lumbar). It could be implemented in the initial trauma assessment protocol to guide the acute management of SCI patients.
Acute spinal cord injury (SCI) is most often secondary to trauma, and frequently presents with associated injuries. A neurological examination is routinely performed during trauma assessment, including through Advanced Trauma Life Support (ATLS). However, there is no standard neurological assessment tool specifically used for trauma patients to detect and characterize SCI during the initial evaluation. The International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) is the most comprehensive and popular tool for assessing SCI, but it is not adapted to the acute trauma patients such that it is not routinely used in that setting. Therefore, the objective is to develop a new tool that can be used routinely in the initial evaluation of trauma patients to detect and characterize acute SCI, while preserving basic principles of the ISNCSCI. The completion rate of the ISCNSCI during the initial evaluation after an acute traumatic SCI was first estimated. Using a modified Delphi technique, we designed the Montreal Acute Classification of Spinal Cord Injuries (MAC-SCI), a new tool to detect and characterize the completeness (grade) and level of SCI in the polytrauma patient. The ability of the MAC-SCI to detect and characterize SCI was validated in a cohort of 35 individuals who have sustained an acute traumatic SCI. The completeness and neurological level of injury (NLI) were assessed by two independent assessors using the MAC-SCI, and compared to those obtained with the ISNCSCI. Only 33% of patients admitted after an acute traumatic SCI had a complete ISNCSCI performed at initial presentation. The MAC-SCI includes 53 of the 134 original elements of the ISNCSCI which is 60% less. There was a 100% concordance between the severity grade derived from the MAC-SCI and from the ISNCSCI. Concordance of the NLI within two levels of that obtained from the ISNCSCI was observed in 100% of patients with the MAC-SCI and within one level in 91% of patients. The ability of the MAC-SCI to discriminate between cervical (C0 to C7) vs. thoracic (T1 to T9) vs. thoraco-lumbar (T10 to L2) vs. lumbosacral (L3 to S5) injuries was 100% with respect to the ISNCSCI. The rate of completion of the ISNCSCI is low at initial presentation after an acute traumatic SCI. The MAC-SCI is a streamlined tool proposed to detect and characterize acute SCI in polytrauma patients, that is specifically adapted to the acute trauma setting. It is accurate for determining the completeness of the SCI and localize the NLI (cervical vs. thoracic vs. lumbar). It could be implemented in the initial trauma assessment protocol to guide the acute management of SCI patients.
Acute spinal cord injury (SCI) is most often secondary to trauma, and frequently presents with associated injuries. A neurological examination is routinely performed during trauma assessment, including through Advanced Trauma Life Support (ATLS). However, there is no standard neurological assessment tool specifically used for trauma patients to detect and characterize SCI during the initial evaluation. The International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) is the most comprehensive and popular tool for assessing SCI, but it is not adapted to the acute trauma patients such that it is not routinely used in that setting. Therefore, the objective is to develop a new tool that can be used routinely in the initial evaluation of trauma patients to detect and characterize acute SCI, while preserving basic principles of the ISNCSCI. The completion rate of the ISCNSCI during the initial evaluation after an acute traumatic SCI was first estimated. Using a modified Delphi technique, we designed the Montreal Acute Classification of Spinal Cord Injuries (MAC-SCI), a new tool to detect and characterize the completeness (grade) and level of SCI in the polytrauma patient. The ability of the MAC-SCI to detect and characterize SCI was validated in a cohort of 35 individuals who have sustained an acute traumatic SCI. The completeness and neurological level of injury (NLI) were assessed by two independent assessors using the MAC-SCI, and compared to those obtained with the ISNCSCI. Only 33% of patients admitted after an acute traumatic SCI had a complete ISNCSCI performed at initial presentation. The MAC-SCI includes 53 of the 134 original elements of the ISNCSCI which is 60% less. There was a 100% concordance between the severity grade derived from the MAC-SCI and from the ISNCSCI. Concordance of the NLI within two levels of that obtained from the ISNCSCI was observed in 100% of patients with the MAC-SCI and within one level in 91% of patients. The ability of the MAC-SCI to discriminate between cervical (C0 to C7) vs. thoracic (T1 to T9) vs. thoraco-lumbar (T10 to L2) vs. lumbosacral (L3 to S5) injuries was 100% with respect to the ISNCSCI. The rate of completion of the ISNCSCI is low at initial presentation after an acute traumatic SCI. The MAC-SCI is a streamlined tool proposed to detect and characterize acute SCI in polytrauma patients, that is specifically adapted to the acute trauma setting. It is accurate for determining the completeness of the SCI and localize the NLI (cervical vs. thoracic vs. lumbar). It could be implemented in the initial trauma assessment protocol to guide the acute management of SCI patients.
Spinal cord injury following trauma is initially dealt with by acute hospitals. The early management including stabilization is usually performed by these centres. This is followed by onward referral to one of the Regional Spinal Injury Units. There is concern of both sides of the fence regarding mobilization following spinal cord injury. The acute hospitals want to avoid the problems of prolonged recumbency and the Regional Spinal Injury Units wish to avoid the problems of early aggressive mobilization. Therefore, we set out to discover if there was a standard approach to mobilising these patients following surgical stabilization, because of the oversubscribed resources of the spinal injury units and the wish to start mobilizing the injured as soon as possible. A comparative audit of the Regional Spinal Injury Units in the UK and North American Units. Regional Spinal Injury Units in United Kingdom and North America Clear Management Plan Mobilisation Schedule We had replies from all Regional Spinal Injury Units in the UK and from seven in North America. The Regional Spinal Injury Units all had differing approaches. Only a few were able to convey a clear management plan and mobilization schedule. Whereas the North American Units provided a ‘mobilize as able’ plan in all cases. The North American Units had a ‘mobilize as able’ policy, whereas the UK units had a mixed approach. A coherent collaboration between the spinal surgeons stabilizing these injuries and the spinal injury units providing rehabilitation would improve patient management.
Initial treatment of
Aims. Developmental cervical spinal stenosis (DcSS) is a well-known predisposing factor for degenerative cervical myelopathy (DCM) but there is a lack of consensus on its definition. This study aims to define DcSS based on MRI, and its multilevel characteristics, to assess the prevalence of DcSS in the general population, and to evaluate the presence of DcSS in the prediction of developing DCM. Methods. This cross-sectional study analyzed MRI spine morphological parameters at C3 to C7 (including anteroposterior (AP) diameter of spinal canal, spinal cord, and vertebral body) from DCM patients (n = 95) and individuals recruited from the general population (n = 2,019). Level-specific median AP spinal canal diameter from DCM patients was used to screen for stenotic levels in the population-based cohort. An individual with multilevel (≥ 3 vertebral levels) AP canal diameter smaller than the DCM median values was considered as having DcSS. The most optimal cut-off canal diameter per level for DcSS was determined by receiver operating characteristic analyses, and multivariable logistic regression was performed for the prediction of developing DCM that required surgery. Results. A total of 2,114 individuals aged 64.6 years (SD 11.9) who underwent surgery from March 2009 to December 2016 were studied. The most optimal cut-off canal diameters for DcSS are: C3 < 12.9 mm, C4 < 11.8 mm, C5 < 11.9 mm, C6 < 12.3 mm, and C7 < 13.3 mm. Overall, 13.0% (262 of 2,019) of the population-based cohort had multilevel DcSS. Multilevel DcSS (odds ratio (OR) 6.12 (95% CI 3.97 to 9.42); p < 0.001) and male sex (OR 4.06 (95% CI 2.55 to 6.45); p < 0.001) were predictors of developing DCM. Conclusion. This is the first MRI-based study for defining DcSS with multilevel canal narrowing. Level-specific cut-off canal diameters for DcSS can be used for early identification of individuals at risk of developing DCM. Individuals with DcSS at ≥ three levels and male sex are recommended for close monitoring or early intervention to avoid
The June 2015 Spine Roundup360 looks at: Less is more in pyogenic vertebral osteomyelitis; Paracetamol out of favour in spinal pain but effective for osteoarthritis; Local wound irrigation to reduce infection?; Lumbar facet joint effusion: a reliable prognostic sign?; SPORT for the octogenarian; Neurological deterioration following
The October 2015 Spine Roundup360 looks at:
Introduction: Apoptosis, or secondary cell death, has been demonstrated in a number of neurological conditions, including Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis and brain ischaemia. It is well established from studies of acute spinal cord injury that apoptosis seems an important factor in secondary cell death and irreversible neurological deficit. It is only recently that studies have emerged analysing secondary cell death in chronic injury to the cord. In this study, the spatial and temporal expression of apoptotic cells was analysed in acute
INTRODUCTION: Apoptosis, or secondary cell death, has been demonstrated in a number of neurological conditions, including Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis and brain ischaemia. It is well established from studies of acute spinal cord injury that apoptosis seems an important factor in secondary cell death and irreversible neurological deficit. It is only recently that studies have emerged analysing secondary cell death in chronic injury to the cord. In this study, the spatial and temporal expression of apoptotic cells was analysed in acute
Resident involvement in the operating room is a vital component of their medical education. Conflicting and limited research exists regarding the effects of surgical resident participation on spine surgery patient outcomes. Our objective was to determine the effect of resident involvement on surgery duration, length of hospital stay and 30-day post-operative complication rates. This study was a multicenter retrospective analysis of the prospectively collected American College of Surgeons National Surgical Quality Improvement Program (ACS NSQIP) database. All anterior cervical or posterior lumbar fusion surgery patients were identified. Patients who had missing trainee involvement information, surgery for cancer, preoperative infection or dirty wound classification, spine fractures,
AO Spine Reference Centre & Institute of Health & Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.
Introduction Charcot arthropathy is a well recognised complication in denervated synovial joints. This is a late complication of
Introduction The devastating and permanent effects of complete spinal cord injury are well documented. In animal models, olfactory ensheathing cells (OEC) transplanted into areas of complete spinal cord injury have promoted regeneration of the neural elements with reconnection of the descending motor pathways. This reproducible anatomical finding is associated with significant motor functional recovery. Accordingly, cellular transplantation therapies have been advocated for human spinal cord injury. In a single-blind, Phase I clinical trial, we aimed to test the feasibility and safety of transplantation of autologous olfactory ensheathing cells into the spinal cord of three humans with complete spinal cord injury. This paper describes the trial and the surgical procedures and presents twelve month safety data. Methods Six patients with paraplegia resulting from chronic (6 – 36 months post-injury)