Introduction: Patellofemoral complications are one of the major causes for revision surgery. In the prosthetic knee, the main determinant within the patellofemoral mechanism is said to be the design of the groove (Kulkarni et al., 2000). Other studies characterising the native
Background. Patellofemoral complications have dwindled with contemporary total knee designs that market anatomic
Total knee arthroplasty (TKA) is widely accepted as a successful surgical intervention to treat osteoarthritis and other degenerative diseases of the knee. However, present statistics on limited survivorship and patient-satisfaction emphasise the need for an optimal endoprosthetic care. Although, the implant design is directly associated with the clinical outcome comprehensive knowledge on the complex relationship between implant design (morphology) and function is still lacking. The goal of this study was to experimentally analyse the relationship between the
We evaluated the outcome in a series of patients with recurrent patellar dislocation who had either medial transfer of the tibial tuberosity and lateral release or an isolated lateral release as the primary treatment. The decision to use one or other procedure was based on a pre-operative distance between the tibial tuberosity to the
Introduction. Tibial tuberosity and
The aim of our study was to assess lateral tracking of the patella with differing designs of Total Knee Arthroplasty (TKA) and compare to that of the native patella. A modified caliper was used to measure the width and position of the patella relative to the femur at different degrees of knee flexion. The relationship of the patella midpoint to that of the femur was subsequently assessed. Group 1 consisted of 25 native knees. Group 2 consisted of 25 patients with antero-posterior stabilised knee implant with a spherical medial condyle and a deep lateralised patellar groove, and Group 3 consisted of 25 patients with a conventional cam-and-post design with a midline patellar groove. The mean follow-up was 28 months.Aim
Method
Recognized anatomic variations that lead to patella instability include patella alta and trochlea dysplasia. Lateralization of the extensor mechanism relative to the trochlea is often considered to be a contributing factor; however, controversy remains as to the degree this contributes to instability and how this should be measured. As the tibial tuberosity-trochlear groove (TT-TG) is one of most common imaging measurements to assess lateralization of the extensor mechanism, it is important to understand its strengths and weaknesses. Care needs to be taken while interpreting the TT-TG value as it is affected by many factors. Medializing tibial tubercle osteotomy is sometimes used to correct the TT-TG, but may not truly address the underlying anatomical problem. This review set out to determine whether the TT-TG distance sufficiently summarizes the pathoanatomy, and if this assists with planning of surgery in patellar instability. Cite this article:
“The shortest distance between two points is a straight line.” This explains many cases of patellar maltracking, when the patellar track is visualised in three dimensions. The three-dimensional view means that rotation of the tibia and femur during flexion and extension, as well as rotational positioning of the tibial and femoral components are extremely important. As the extensor is loaded, the patella tends to “center” itself between the patellar tendon and the quadriceps muscle. The patella is most likely to track in the
Aims. To explore the efficacy of extracorporeal shockwave therapy (ESWT) in the treatment of osteochondral defect (OCD), and its effects on the levels of transforming growth factor (TGF)-β, bone morphogenetic protein (BMP)-2, -3, -4, -5, and -7 in terms of cartilage and bone regeneration. Methods. The OCD lesion was created on the
Introduction. The
A profound understanding of the pathoanatomy of the patellofemoral joint is considered to be fundamental for navigated knee arthroplasty. Previous studies used less sophisticated imaging modalities such as photography and plain radiographs or direct measurement tools like probes and micrometers to define the morphology of the
Introduction: Patellofemoral instability (PFI) is a disabling condition that occurs in adolescence. Recurrence after patellar dislocation has been reported in 2–50% of cases. This study aimed to compare the shape of the distal femur in PFI to a normal cohort. Method: 108 CT scans from 54 subjects with PFI were compared to 197 CT scans from 102 normal subjects. Outlines of the
Aims. The present study investigates the effectiveness of platelet-rich plasma (PRP) gel without adjunct to induce cartilage regeneration in large osteochondral defects in a rabbit model. Methods. A bilateral osteochondral defect was created in the femoral
BACKGROUND. Conventional TKA surgery attempts to restore patients to a neutral alignment, and devices are designed with this in mind. Neutral alignment may not be natural for many patients, and may cause dissatisfaction [1]. To solve this, kinematical alignment (KA) attempts to restore the native pre-arthritic joint-line of the knee, with the goal of improving knee kinematics and therefore patient's function and satisfaction [1]. Proper prosthetic trochlea alignment is important to prevent patella complications such as instability or loosening. However, available TKA components have been designed for mechanical implantation, and concerns remain relating the orientation of the prosthetic trochlea when implants are kinematically positioned. The goal of this study is to investigate how a currently available femoral component restores the native trochlear geometry of healthy knees when virtually placed in kinematic alignment. METHODS. The healthy knee OAI (Osteoarthritis Initiative) MRI dataset was used. 36 MRI scans of healthy knees were segmented to produce models of the bone and cartilage surfaces of the distal femur. A set of commercially available femoral components was laser scanned. Custom 3D planning software aligned these components with the anatomical models: distal and posterior condyle surfaces of implants were coincident with distal and posterior condyle surfaces of the cartilage; the anterior flange of the implant sat on the anterior cortex; the largest implant that fitted with minimal overhang was used, performing ‘virtual surgery’ on healthy subjects. Software developed in-house fitted circles to the deepest points in the
Conventional TKA surgery attempts to restore patients to a neutral alignment, and devices are designed with this in mind. Neutral alignment may not be natural for many patients, and may cause dissatisfaction. To solve this, kinematical alignment (KA) attempts to restore the native pre-arthritic joint-line of the knee, with the goal of improving knee kinematics and therefore patient's function and satisfaction. Proper prosthetic trochlea alignment is important to prevent patella complications such as instability or loosening. However, available TKA components have been designed for mechanical implantation, and concerns remain relating the orientation of the prosthetic trochlea when implants are kinematically positioned. The goal of this study is to investigate how a currently available femoral component restores the native trochlear geometry of healthy knees when virtually placed in kinematic alignment. The healthy knee OAI (Osteoarthritis Initiative) MRI dataset was used. 36 MRI scans of healthy knees were segmented to produce models of the bone and cartilage surfaces of the distal femur. A set of commercially available femoral components was laser scanned. Custom 3D planning software aligned these components with the anatomical models: distal and posterior condyle surfaces of implants were coincident with distal and posterior condyle surfaces of the cartilage; the anterior flange of the implant sat on the anterior cortex; the largest implant that fitted with minimal overhang was used, performing ‘virtual surgery’ on healthy subjects. Software developed in-house fitted circles to the deepest points in the
Abnormal patella height has been found to be one of the main reasons for abnormal contact between patella and
The clinical success of osteochondral autografts is heavily reliant on their mechanical stability, as grafts which protrude above or subside below the native cartilage can have a negative effect on the tribological properties of the joint [1]. Furthermore, high insertion forces have previously been shown to reduce chondrocyte viability [2]. Commercial grafting kits may include a dilation tool to increase the diameter of the recipient site prior to insertion. The aim of this study was to evaluate the influence of dilation on the primary stability of autografts. Six human cadaveric femurs were studied. For each femur, four 8.5 × 8mm autografts were harvested from the
INTRODUCTION. Over the past 40 years of knee arthroplasty, significant advances have been made in the design of knee implants, resulting in high patient satisfaction. Patellar tracking has been central to improving the patient experience, with modern designs including an optimized Q-angle, deepened
Introduction. The ACTIVE(Advanced Cartilage Treatment with Injectable-hydrogel Validation of the Effect) study investigates safety and performance of a novel dextran-tyramine hydrogel implant for treatment of small cartilage defects in the knee (0.5-2.0cm2). The hydrogel is composed of a mixture of natural polymer conjugates that are mixed intra-operatively and which cross-link in situ through a mild enzymatic reaction, providing a cell-free scaffold for cartilage repair. Method. The ACTIVE study is split into a safety (n=10) and a performance cohort (n=36). The Knee Injury and Osteoarthritis Outcome Score (KOOS), pain (numeric rating scale, NRS), Short-Form Health Survey (SF-36) were compared at baseline and 3, 6, and 12 months after surgery. The primary performance hypothesis is an average change in the KOOS from baseline to 12 months (ΔKOOS) greater than a minimal clinically important change (MIC) of 10. No statistical tests were performed as these are preliminary data on a smaller portion of the total study. Result. All patients of the safety cohort (n=10, mean age±SD, 30±9 years) were treated with the hydrogel for a symptomatic (NRS≥4) cartilage defect on the femoral condyle or
A risk factor for patellofemoral instability is trochlear dysplasia. Trochleoplasty is a surgical procedure used to reshape the