Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 257 - 257
1 Sep 2012
Maric M Bergovec M Viskovic A Kolundzic R Smerdelj M Orlic D
Full Access

AIM. To present our experience in patients treated under primary diagnosis giant cell tumor of bone at Department Orthopaedic Surgery Zagreb University School of Medicine in a 15-year period from 1995 to 2009. METHODS. We performed a retrospective study of all patients treated in our Department because of giant cell tumor of bone (GCT) from 1995 to 2009. The mean age of our patients was 29,9 years (range: 14 to 70 years). Sex distribution showed prevalence in female (F:M=23:12=66%:34%). All together, 39 patients were operated under primary diagnosis of GCT. Four patients were lost in follow-up. In total, 35 patients were included in study. Diagnosis of GCT was made according to clinical, imaging and histological findings, and distributed by Campanacci's classification. RESULTS. Not including diagnostic biopsy, 84 operations were performed on 35 patients. Fourteen patients (40%) had GCT grade 1, fourteen (40%) had GCT grade 2, and seven (20%) had GCT grade 3. From the first symptoms to diagnosis there was an average duration of 7 months (range: 0 to 24 months), where the main symptoms were pain and swelling of affected bone and/or joint. GCT was localized in distal femur (n=12, 34%), proximal tibia (n=10, 29%), distal tibia (n=4, 11%), distal radius (n=3, 9%), and other locations (n=6, 17%). Patients with less aggressive GCT (grades 1 and 2) were treated with marginal excision: excochleation and reconstruction with bone transplant (n=12, 34%). In patients with locally more aggressive tumor (grades 2 and 3), “en bloc” resection and reconstruction with tumor endoprosthesis or bone transplant was performed (n=22, 63%). Due to localization of tumor, one patient was treated with radiation (3%). Complications were recorded in 12 patients (34%), and are shown as total number and percentage of all complications. Complications were the most common in knee region, proximal tibia (n=4, 33%) and distal femur (n=3, 25%). Also, the complications occured more frequently after “en bloc” resection (n=7, 58%). GCT classified as gradus 2 had most complications (n=5, 42%) till GCT classified as gradus 3 had least (n=3, 25% of complications, 9% of all). We recorded and treated local recurrence of tumor (n=6, 50%), infection (n=2, 17%), and mehanical complications of endoprosthesis (n=2, 17%). Due to local recurrences, in 2 patients underlying osteosarcoma was revealed, and they were treated with amputation. CONCLUSION. Each patient with GCT should be treated individually. Regardless non-malignant attribute, local behaviour of tumor determines treatment approach according to treatment principles of malignant tumor of bone. Number of complications in our patients is relatively high, recorded in one third of our patients, which matches the literature in announced studies


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 302 - 302
1 Sep 2012
Van Der Heijden L Van De Sande M Nieuwenhuijse M Dijkstra P
Full Access

Background. Giant cell tumours of bone (GCT) are benign bone tumours with a locally aggressive character. Local recurrence is considered the main complication of surgical treatment and is described in up to 50% of patients. Intralesional curettage with the use of adjuvants like phenol or polymethylmetacrylate (PMMA) is recommended as initial treatment, significantly decreasing the risk of recurrence. However, risk factors for local recurrence in skeletal GCT have not yet been firmly established and a golden standard for local therapy remains controversial. Objective. The identification of risk factors predisposing for an increased risk of local recurrence. In addition, different surgical techniques are compared to identify the optimal surgical approach for the identified risk factors. Methods. In a retrospective study all 215 patients with bone GCT treated between 1964 and 2009 in one centre were included, of which 193 were suitable for analysis. All patients had minimal follow-up of 12 months (mean 115; range 12–445). Using a Kaplan Meier survival analysis recurrence free survival rates were calculated. Cox-regression was used to determine the influence of different types of therapy, the use of adjuvants, and various patient and tumour characteristics. Results. The mean local recurrence rate for all patients was 35.2% (n=68, 95%CI: 28.3–42.1). Recurrence rate after wide resection was 0.17 (n=6, 95%CI: 0.04–0.29), after curettage with adjuvants 0.32 (n=42, 95%CI 0.24–0.41) and after curettage alone 0.74 (n=20, 95%CI: 0.57–0.91, p < 0.001). Soft tissue extension (Hazard Ratio: 3.8, p < 0.001), localisation in radius and ulna (HR: 2.6, p=0.013), and surgical experience (HR: 2.2, p=0.022) were identified as significant general risk factors for local recurrence. For intralesional resection, Campanacci grade III (HR: 3.9, p=0.019) and location in axial skeleton (HR: 3.3, p=0.016) additionally significantly increased this risk. Comparing treatments our data showed that curettage followed by adjuvants was superior to curettage alone (p < 0.004), and the application of both phenol and PMMA did not present a significantly better outcome than curettage and PMMA alone (HR: 1.07, p=0.881). Conclusion. Of all possible risk factors only soft tissue extension, localisation in radius and ulna and non-radical resections significantly influenced the risk of local recurrence for all treatments. In addition, we found that high-grade tumours and localisation in the axial skeleton were additional risk factors for local recurrence after intralesional surgery. Although wide resection increases patient morbidity, it can be the therapy of choice in high risk patients. Intralesional therapy can be advised for low recurrence risk patients using curettage and PMMA only, whereas our study could not confirm the predicted effect of phenol as an additional adjuvant


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_9 | Pages 19 - 19
1 May 2014
Jacobs N Sutherland M Stubbs D McNally M
Full Access

A systematic literature review of distraction osteogenesis (DO) for the primary reconstruction of bone defects following resection of primary malignant tumours of long bones (PMTLB) is presented. Fewer than 50 cases were identified. Most reports relate to benign tumours or secondary reconstructive procedures. The outcomes of our own series of 7 patients is also presented (4 tibiae, 3 femora). All patients had isolated bone lesions without metastases and were assessed through the hospital sarcoma board. Mean follow-up was 59 months (17–144). Mean age was 42 years. Final histologic diagnoses were 3 chondrosarcoma, 2 malignant fibrous histiocytoma, 1 adamantinoma and 1 malignant intraosseous nerve sheath tumour. Mean bone defect after resection was 13.1cm (10–17) and bone transport was the reconstruction method in all. There was one local recurrence of tumour six months post-resection, necessitating amputation. Mean frame index for remaining cases was 30.9 days/cm (15.7–41.6). Complications included pin infection, docking site non-union, premature corticotomy union, soft-tissue infection and minor varus deformity. Six cases remain tumour-free with united, well-aligned bones and good long-term function. We conclude DO provides an effective biologic reconstruction option in select cases of PMTLB


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 1 | Pages 108 - 112
1 Jan 2009
Chandrasekar CR Grimer RJ Carter SR Tillman RM Abudu A Buckley L

Endoprosthetic replacement of the proximal femur may be required to treat primary bone tumours or destructive metastases either with impending or established pathological fracture. Modular prostheses are available off the shelf and can be adapted to most reconstructive situations for this purpose. We have assessed the clinical and functional outcome of using the METS (Stanmore Implants Worldwide) modular tumour prosthesis to reconstruct the proximal femur in 100 consecutive patients between 2001 and 2006. We compared the results with the published series for patients managed with modular and custom-made endoprosthetic replacements for the same conditions.

There were 52 males and 48 females with a mean age of 56.3 years (16 to 84) and a mean follow-up of 24.6 months (0 to 60). In 65 patients the procedure was undertaken for metastases, in 25 for a primary bone tumour, and in ten for other malignant conditions. A total of 46 patients presented with a pathological fracture, and 19 presented with failed fixation of a previous pathological fracture. The overall patient survival was 63.6% at one year and 23.1% at five years, and was significantly better for patients with a primary bone tumour than for those with metastatic tumour (82.3% vs 53.3%, respectively at one year (p = 0.003)). There were six early dislocations of which five could be treated by closed reduction. No patient needed revision surgery for dislocation. Revision surgery was required by six (6%) patients, five for pain caused by acetabular wear and one for tumour progression. Amputation was needed in four patients for local recurrence or infection.

The estimated five-year implant survival with revision as the endpoint was 90.7%. The mean Toronto Extremity Salvage score was 61% (51% to 95%). The implant survival and complications resulting from the use of the modular system were comparable to the published series of both custom-made and other modular proximal femoral implants.

We conclude that at intermediate follow-up the modular tumour prosthesis for proximal femur replacement provides versatility, a low incidence of implant-related complications and acceptable function for patients with metastatic tumours, pathological fractures and failed fixation of the proximal femur. It also functions as well as a custom-made endoprosthetic replacement.