Introduction.
UKA with mobile bearing is a one of the treatment of medial osteoarthritis. However, some reports refer to the risk of dislocation of the mobile bearing. Past reports pointed out that medial gap might be enlarged in deep flexion position (over 120 degrees), and says that it will lead to instability of the mobile bearing. The purpose of this study is to research the risk factors of enlargement of medial gap in deep flexion position. We performed 81 UKAs with mobile bearing system from November 2013 to December 2015, and could evaluate 41 knees. This study of 41 knees included 9 males and 32 females, with average operation age of 75.4years(63–89years). The diagnosis was osteoarthritis in 39 knees and osteonecrosis in 2 knees. The UKA(Oxford partial knee microplasty, Biomet, Warsaw, IN) was used in all cases. We performed distal femur and proximal tibia osteotomy using CT-Free navigation system(Stryker Navigation System II/precision Knee Navigation ver4.0). And we inserted femoral and tibial trial component, then we placed an UKA tensioner on the medial component of the knee. Using tensioner under 30 lbs, we measured joint medial gap at 0,20,45,90,130(deep flexion) degrees. When we compared medial gap at 90 degrees position with at 130 degrees, we defined it as ‘instability group’ if there was gap enlargement more than 1mm, and defined it as ‘stability group’ if there wasn't. We compared this two groups with regard to age, BMI, femoro-tibial angle (FTA), the diameter of anterior cruciate ligament (ACL), tibial angle and tibial posterior slope angle of the implant. We evaluated preoperative and postoperative FTA by weightbearing long leg antero-posterior alignment view X-rays. We measured ACL diameter at its condyle level in coronal view of MRI. Also we evaluated tibial component implantation angle by postoperative CT using 3D template system. These measurement were analyzed statistically using The stability group contained 26 knees, and the instability group contained 15 knees. Compared with the stability group, the instability group indicated higher FTA (p=0.001). Between 20 and 90 degrees flexion position, there was no change of medial gap. Dislocation of the mobile bearing is one of the complications of UKA and it will need re-operation. It is said to be caused by impingement of the bearing and osteophyte of femur. However, some reports said that dislocation was happened when the knee was flexed deeply or twisted, and there was no impingement. We think it may means that dislocation could be caused by medial gap enlargement. This study indicates that higher FTA could be risk factor of dislocation of mobile bearing. It is important to evaluate preoperatively FTA by X-ray.
The purpose of this study is to evaluate accuracy of tibia cutting and tibia implantation in UKA which used navigation system for tibia cutting and tibia component implantation, and to evaluate clinical results. We performed 72 UKAs using navigation system from November, 2012. This study of 72 knees included 56 females and 16 males with an average operation age of 74.2 years and an average body mass index (BMI) of 24.8 kg/m2. The diagnosis was osteoarthritis (OA) in 67 knees and osteonecrosis (ON) in 5 knees. The UKA (Oxford partial knee microplasty, Biomet, Warsaw, IN) was used all cases. We evaluated patients clinically using the Japanese orthopaedic association (JOA) score, range of motion (ROM), operation time, the amount of bleeding and complications. Patients were evaluated clinically at preoperation and final follow up in JOA score and ROM. As an radiologic examination, we evaluated preoperative and postoperative lower limb alignment in FTA (femoro-tibial angle) by weightbearing long leg antero-posterior alignment view X-rays. Also we evaluated a tibial component implantation angle by postoperative CT, and tibia cutting angle by intraoperative navigation system. We defined the tibial angle which a tibia functional axis and the tibia component made in coronal plane, also tibial posterior slope angle which a tibia axis and tibia component made in sagittal plane by CT. We measured tibial angle and tibial posterior slope angle by 3D template system. We performed UKA in all cases mini-midvastus approach. At first we performed osteotomy of the proximal medial tibia using CT-Free navigation. At this procedure we performed osteotomy to do re-cut if check did cutting surface in navigation, and there was cutting error (>3°), and then to do check again in navigation. Next we did not use navigation and went the osteotomy of the distal femur with an IM rod and drill guide of microplasty system. And then we performed a trial and decided bearing gap and moved to cementing. At first we went cementing of the tibia component. At this procedure we went to drive implant again if check did implant surface in navigation, and there was implantation error(>3°), and to do check. We checked did tibia cutting, tibia implantation carefully in navigation. In addition, We sterilize a clips and use it came to be in this way possible for the check of the first osteotomy side exactly. ROM was an average of 122.7° of preoperation became an average of 128.2° at final follow up, and JOA score was an average of 50.5 points of preoperation improved an average of 86.6 points at final follow up after UKA. An average of the operation time was 94 minutes, an average of the amount of bleeding was 137.7ml, and complications were one proximal type deep venous thrombosis (DVT) and one pin splinter joining pain by navigation, .Asetic loosening(tibial component) was one case, and this conversed the TKA. In the radiologic evaluation, FTA was an average of 182.1° of preoperation corrected an average of 175.9°after UKA. In other words, an average of 6.2° were corrected by UKA. The tibia component implantation angle was an average of 90.18° in a measurement by the CT after UKA, intoraoperative tibia component implantation angle was an average of 90.32° in a measurement by the navigation system. These two differences did not accept the significant difference at an average of 1.33°.(P=0.5581). Similarly, the posterior slope angle were as follow; average of 5.65°by CT and average of 5.75°by navigation. These two differences did not accept the significant difference at an average of 1.33°. (P=0.6475) Discussion: We performed UKA using navigation and evaluated the implantation accuracy for tibia osteotomy, tibia implantation. They were good alignment with an average of 90.18°, and outliers more than 3° were two cases(2.8%). It will be necessary to examine long-term progress including clinical results complications in future. We are performed UKA now in femur side using PSI(patient specific instruments) and tbia side using Navigation.
Aims. Day-case arthroplasty is gaining popularity in Europe. We report outcomes from the first 12 months following implementation of a day-case pathway for
Aims. A functional anterior cruciate ligament (ACL) or posterior cruciate ligament (PCL) has been assumed to be required for patients undergoing
Aims.
Aims. The aim of this study was to describe the pattern of revision indications for
Aims.
Aims. The COVID-19 pandemic has caused unprecedented disruption to elective orthopaedic services. The primary objective of this study was to examine changes in functional scores in patients awaiting total hip arthroplasty (THA), total knee arthroplasty (TKA), and
Aims. While residual fixed flexion deformity (FFD) in
Aims. Higher osteoblastic bone activity is expected in aseptic loosening and painful
Aims. Return to sport following undergoing total (TKA) and
The December 2024 Knee Roundup360 looks at: Unicompartmental knee arthroplasty and total knee arthroplasty in the same patient?; Lateral unicompartmental knee arthroplasty: is it a good option?; The fate of the unresurfaced patellae in contemporary total knee arthroplasty: early- to mid-term results; Tibial baseplate migration is not associated with change in PROMs and clinical scores after total knee arthroplasty; Unexpected positive intraoperative cultures in aseptic revision knee arthroplasty: what effect does this have?; Kinematic or mechanical alignment in total knee arthroplasty surgery?; Revision total knee arthroplasty achieves minimal clinically important difference faster than primary total knee arthroplasty; Outcomes after successful DAIR for periprosthetic joint infection in total knee arthroplasty.
The August 2024 Knee Roundup360 looks at: Calcification’s role in knee osteoarthritis: implications for surgical decision-making; Lower complication rates and shorter lengths of hospital stay with technology-assisted total knee arthroplasty; Revision surgery: the hidden burden on surgeons; Are preoperative weight loss interventions worthwhile?; Total knee arthroplasty with or without prior bariatric surgery: a systematic review and meta-analysis; Aspirin triumphs in knee arthroplasty: a decade of evidence; Efficacy of DAIR in unicompartmental knee arthroplasty: a glimpse from Oxford.
The August 2023 Knee Roundup360 looks at: Curettage and cementation of giant cell tumour of bone: is arthritis a given?; Anterior knee pain following total knee arthroplasty: does the patellar cement-bone interface affect postoperative anterior knee pain?; Nickel allergy and total knee arthroplasty; The use of artificial intelligence for the prediction of periprosthetic joint infection following aseptic revision total knee arthroplasty; Ambulatory unicompartmental knee arthroplasty: development of a patient selection tool using machine learning; Femoral asymmetry: a missing piece in knee alignment; Needle arthroscopy – a benefit to patients in the outpatient setting; Can lateral unicompartmental knees be done in a day-case setting?
The June 2023 Knee Roundup360 looks at: Cementless total knee arthroplasty is associated with early aseptic loosening in a large national database; Is cementless total knee arthroplasty safe in females aged over 75 years?; Could novel radiological findings help identify aseptic tibial loosening?; The Attune cementless versus LCS arthroplasty at introduction; Return to work following total knee arthroplasty and unicompartmental knee arthroplasty; Complications and downsides of the robotic total knee arthroplasty; Mid-flexion instability in kinematic alignment better with posterior-stabilized and medial-stabilized implants?; Patellar resurfacing does not improve outcomes in modern knees.
The aim of this study was to determine whether obesity had a detrimental effect on the long-term performance and survival of medial unicompartmental knee arthroplasties (UKAs). This study reviewed prospectively collected functional outcome scores and revision rates of all medial UKA patients with recorded BMI performed in Christchurch, New Zealand, from January 2011 to September 2021. Patient-reported outcome measures (PROMs) were the primary outcome of this study, with all-cause revision rate analyzed as a secondary outcome. PROMs were taken preoperatively, at six months, one year, five years, and ten years postoperatively. There were 873 patients who had functional scores recorded at five years and 164 patients had scores recorded at ten years. Further sub-group analysis was performed based on the patient’s BMI. Revision data were available through the New Zealand Joint Registry for 2,323 UKAs performed during this time period.Aims
Methods