Mechanical alignment (MA) techniques for total knee arthroplasty (TKA) may introduce significant anatomic modifications, as it is known that few patients have neutral femoral, tibial or overall lower limb mechanical axes. A total of 1000 knee CT-Scans were analyzed from a database of patients undergoing TKA. MA tibial and femoral bone resections were simulated. Femoral rotation was aligned with either the trans-epicondylar axis (TEA) or with 3° of external rotation to the posterior condyles (PC). Medial-lateral (DML) and flexion-extension (DFE) gap differences were calculated. Extension space ML imbalances (3mm) occurred in 25% of varus and 54% of
INTRODUCTION. Mechanical alignment in TKA introduces significant anatomic modifications for many individuals, which may result in unequal medial-lateral or flexion-extension bone resections. The objective of this study was to calculate bone resection thicknesses and resulting gap sizes, simulating a measured resection mechanical alignment technique for TKA. METHODS. Measured resection mechanical alignment bone resections were simulated on 1000 consecutive lower limb CT-Scans from patients undergoing TKA. Bone resections were simulated to reproduce the following measured resection mechanical alignment surgical technique. The distal femoral and proximal tibial cuts were perpendicular to the mechanical axis, setting the resection depth at 8mm from the most distal femoral condyle and from the most proximal tibial plateau (Figure 1). If the resection of the contralateral side was <0mm, the resection level was increased such that the minimum resection was 0mm. An 8mm resection thickness was based on an implant size of 10mm (bone +2mm of cartilage). Femoral rotation was aligned with either the trans-epicondylar axis or with 3 degrees of external rotation to the posterior condyles. After simulation of the bone cuts, media-lateral gap difference and flexion-extension gaps difference were calculated. The gap sizes were calculated as the sum of the femoral and tibial bone resections, with a target bone resection of 16mm (+ cartilage corresponding to the implant thickness). RESULTS. For both the varus and
Abstract. Background. Conventional TKR aims for neutral mechanical alignment which may result in a smaller lateral distal femoral condyle resection than the implant thickness. We aim to explore the mismatch between implant thickness and bone resection using 3D planning software used for Patient Specific Instrumentation (PSI) TKR. Methods. This is a retrospective anatomical study from pre-operative MRI 3D models for PSI TKR. Cartilage mapping allowed us to recreate the native anatomy, enabling us to quantify the mismatch between the distal lateral femoral condyle resection and the implant thickness. Results. We modelled 292 knees from PSI TKR performed between 2012 and 2015. There were 225 varus knees and 67
The Coronal Plane Alignment of the Knee (CPAK) is a recent method for classifying knees using the hip-knee-ankle angle and joint line obliquity to assist surgeons in selection of an optimal alignment philosophy in total knee arthroplasty (TKA)1. It is unclear, however, how CPAK classification impacts pre-operative joint balance. Our objective was to characterise joint balance differences between CPAK categories. A retrospective review of TKA's using the OMNIBotics platform and BalanceBot (Corin, UK) using a tibia first workflow was performed. Lateral distal femoral angle (LDFA) and medial proximal tibial angle (MPTA) were landmarked intra-operatively and corrected for wear. Joint gaps were measured under a load of 70–90N after the tibial resection. Resection thicknesses were validated to recreate the pre-tibial resection joint balance. Knees were subdivided into 9 categories as described by MacDessi et al.1 Differences in balance at 10°, 40° and 90° were determined using a one-way 2-tailed ANOVA test with a critical p-value of 0.05. 1124 knees satisfied inclusion criteria. The highest proportion of knees (60.7%) are CPAK I with a varus aHKA and Distal Apex JLO, 79.8% report a Distal Apex JLO and 69.3% report a varus aHKA. Greater medial gaps are observed in varus (I, IV, VII) compared to neutral (II, V, VIII) and
Management of a
Introduction. The deformity in osteoarthritis (OA) of the knee has been evaluated mainly in the frontal plane two dimensional X-ray using femorotibial angle. Although the presence of underlying rotational deformity in the varus knee and coexisting hip abnormality in the
For many years, achieving a neutral coronal Hip-Knee-Ankle angle (HKA) measured on radiographs has been considered a factor of success for total knee arthroplasty (TKA). Lower limb HKA is influenced by the acquisition conditions, and static HKA (sHKA) may not be representative of the dynamic loading that occurs during gait. The primary aim of the study was to see if the sHKA is predictive of the dynamic HKA (dHKA). A secondary aim was to document to what degree the dHKA changes throughout gait. We analysed the 3-D knee kinematics during gait of a cohort of 90 healthy individuals (165 knees) with the KneeKG™ system. dHKA was calculated and compared with sHKA values. Knees were considered “Stable” if the dHKA remained positive or negative – i.e. in valgus or varus – for greater than 95% of the corresponding phase and “Changer” otherwise. Patient characteristics of the Stable and Changer knees were compared to find contributing factors. The dHKA absolute variation during gait was 10.9±5.3° [2 .4° – 28.3°] for the whole cohort. The variation was greater for the varus knees (10.3±4.8° [2.4° – 26.3°]), than for the
Introduction. To evaluate the results of correction of knee deformities based on deformity analysis in Achondroplasia, the commonest skeletal dysplasia as some have concomitant ligamentous deformities. Materials and Methods. Retrospective study from a prospective database (2007–2020) of achondroplasts who underwent growth modulation. Analysis of medical records with objective measurement of mechanical axis radiographs was done (Traumacad). Satisfactory alignment was defined as neutral to slightly varus (0–15 mm MAD) so that the MCL/LCL laxity is not revealed. Results. 23 patients, 41 limbs, 34 bilateral, 6 unilateral underwent multiple growth modulation procedures. 2 had
Alignment of total joint replacement in the
Aims. The aim of this retrospective study was to measure and determine variation in VCA between the two limbs in a patient with windswept deformity on preoperative full-length, standing, hip-to-ankle radiographs. We hypothesised that there will be significant difference in VCA between the two limbs of a patient with arthritic windswept deformity and therefore it is necessary to individualise VCA for each limb preoperatively on full-length radiographs during TKA. Patients and Methods. In this retrospective study, femoral valgus correction angle (VCA) measured on full-length, hip-to-ankle, standing radiographs was compared between the varus and the valgus limbs in 63 patients with windswept deformities who underwent TKA. Results. The mean VCA in varus knees was significantly higher compared to mean VCA in
Background. Achieving a neutral static Hip-Knee-Ankle angle (sHKA) measured on radiographs has been considered a factor of success for total knee arthroplasty (TKA). However, recent studies have shown that sHKA seems to have no effect on TKA survivorship. sHKA is not representative of the dynamic loading occurring during gait, unlike the dynamic HKA (dHKA). Research question. The primary objective was to see if the sHKA is predictive of the dynamic HKA (dHKA). A secondary objective was to document to what degree the dHKA changes during gait. Methods. We analysed 3D knee kinematics during gait of a cohort of 90 healthy individuals with the KneeKG™ system. dHKA was calculated and compared with sHKA. Knees were considered “Stable” if the dHKA remained in valgus or varus for greater than 95% of the corresponding phase, and “Changer” otherwise. Patient characteristics of the Stable and Changer knees were compared to find associated factors. Results. dHKA absolute variation during gait was 10.9±5.3° for the whole cohort. The variation was less for the varus knees (10.3±4.8°), than for the
Introduction. Valgus knee deformity is associated especially with differences in anatomy between medial and lateral femoral condyles. Vertically smaller lateral condyle and more distally located medial condyle cause valgus deformity in extension. The anteroposterior dimensions of both condyles influence the knee axis in flexion. In a „true“
Background. Total knee arthroplasty has been performed even for severe
Backgrounds. Most of in vivo kinematic studies of total knee arthroplasty (TKA) have reported on varus knee. TKA for the
Introduction. Valgus deformity in an end stage osteoarthritic knee can be difficult to correct with no clear consensus on case management. Dependent on if the joint can be reduced and the degree of medial laxity or distension, a surgeon must use their discretion on the correct method for adequate lateral releases. Robotic assisted (RA) technology has been shown to have three dimensional (3D) cut accuracy which could assist with addressing these complex cases. The purpose of this work was to determine the number of soft tissue releases and component orientation of valgus cases performed with RA total knee arthroplasty (TKA). Methods. This study was a retrospective chart review of 72 RATKA cases with valgus deformity pre-operatively performed by a single surgeon from July 2016 to December 2017. Initial and final 3D component alignment, knee balancing gaps, component size, and full or partial releases were collected intraoperatively. Post-operatively, radiographs, adverse events, WOMAC total and KOOS Jr scores were collected at 6 months, 1 year and 2 year post-operatively. Results. Pre-operatively, knee deformities ranged from reducible knees with less than 5mm of medial laxity to up to 12° with fixed flexion contracture. All knees were corrected within 2.5 degrees of mechanical neutral. Average femoral component position was 0.26. o. valgus, and 4.07. o. flexion. Average tibial component position was 0.37. o. valgus, and 2.96. o. slope, where all tibial components were placed in a neutral or valgus orientation. Flexion and extension gaps were within 2mm (mean 1mm) for all knees. Medial and lateral gaps were balanced 100% in extension and 93% in flexion. The average flexion gap was 18.3mm and the average extension gap was 18.7mm. For component size prediction, the surgeon achieved their planned within one size on the femur 93.8% and tibia 100% of the time. The surgeon upsized the femur in 6.2% of cases. Soft tissue releases were reported in one of the cases. At latest follow-up, radiographic evidence suggested well seated and well fixed components. Radiographs also indicated the patella components were tracking well within the trochlear groove. No revision and re-operation is reported. Mean WOMAC total scores were improved from 24±8.3 pre-op to 6.6±4.4 2-year post-op (p<0.01). Mean KOOS scores were improved from 46.8±9.7 pre-op to 88.4±13.5 2-year post-op (p<0.01). Discussion. In this retrospective case review, the surgeon was able to balance the knee with bone resections and avoid disturbing the soft tissue envelope in
Background. We have performed total knee arthroplasties for valgus and varus in the knees of one person and investigate the clinical characteristics of these patients and the relationship between the kind of deformity and postoperative result. Methods. From March 2002 to February 2010, 25 patients who had simultaneous varus and
In a „true“
Introduction. The prevalence of reversing of extension coronal deformity during flexion and how that may change the routine algorithm of soft tissue balancing in total knee arthroplasty (TKA) has not been published. We name this phenomenon, the reversing coronal deformity (RCD). We observed 12% (45 patients) of coronal deformities consistently reverse in flexion in the osteoarthritic knees before surgery. We conclude that RCD phenomena need to be addressed in every TKA and collateral ligament release need to be modified or avoided; otherwise postoperative flexion instability may be inevitable. Femoral rotation adjustment with posterior capsule release has to be attempted first in RCD patients. Method. We define RCD as the reversing of a coronal extension deformity of more than 2° while the knee reaches 90°of flexion. That is to say a 2° or more varus knee in extension becomes a 2° or more valgus at 90° of flexion or vice versa. We retrospectively analyzed, in a multicenter study the alignment patterns of 387 (US = 270, UK = 117) consecutive computer navigated TKA subjects (June 2004–May 2008). 364/387 (US = 252, UK = 112) subjects were eligible for analysis (23 subjects had incomplete data: US = 18, UK = 5). The coronal deformity kinematics was observed during the range of motion and the range of medial /lateral deflections were analyzed. Result:. 260/364 subjects had varus knees and 104/364 subjects had
Background. Differences of dynamic (extension vs. flexion) coronal alignment in osteoarthritic (OA) knees undergoing primary total knee arthroplasty (TKA) remain poorly studied. Methods. Prospectively collected measurements of dynamic coronal alignment using an imageless computer-navigation system (Stryker©) during primary TKA were analysed. Coronal alignment was represented by the hip-knee-ankle angle and determined at maximal extension and 90° flexion before making any bony cuts or ligamentous releases. Measurements were subgrouped according to coronal alignment in extension as varus (≤-3°), neutral (>−3°, <+3°) or valgus (≥+3°). Results. Of 545 knees (347 females), coronal alignment in extension was 261 (48%) varus, 197 (36%) neutral and 87 (16%) valgus. Varus extension alignment was more common in male vs. female OA knees (64% vs. 39%; p< .0001). Valgus extension alignment was more common in female vs male OA knees (19.5% vs 9.5%; p= .002). In flexion, 174 (66%) of varus OA knees remained varus and 6 (3.3%) evolved to valgus. Extension varus exceeding 10° in 29/261 (11%) varus knees remained flexion varus in 28 (96.5%). Mean (±SD) difference between extension and flexion in varus knees was 1.98° (±4.0°) valgus. Of 87
The aim of the study was to investigate rotational behaviour of the arthritic knee before (preimplant) and after (postimplant) total knee replacement (TKR) using (image-free navigation system as a measurement tool which recorded the axial plane alignment between femur and tibia, in addition to the coronal and sagittal alignment as the knee is flexed through the range of motion. The data on the rotation of the arthritic knee was collected after the knee exposure and registration of the lower limb (preimplant data). The position of rotation between the femur and tibia was recorded in 30° flexion, 45°, 60°, 90° and maximum degrees of flexion of the knee. The data was divided into subsets of varus and