Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_21 | Pages 35 - 35
1 Dec 2016
Napora J Thompson G Gilmore A Son-Hing J Liu R
Full Access

Unstable slipped capital femoral epiphysis (SCFE) has an increased incidence of avascular necrosis (AVN). The purpose of this study was to determine if early identification and intervention for AVN may help preserve the femoral head. We retrospectively reviewed 48 patients (50 hips) with unstable SCFE managed between 2000 and 2014. Based on two different protocols during the same time period, 17 patients (17 hips) had a scheduled MRI between 1 and 6 months from initial surgery, with closed bone graft epiphysiodesis (CBGE) or free vascularised fibular graft (FVFG) if AVN was diagnosed. Thirty-one patients (33 hips) were evaluated by plain radiographs. Outcomes analysed were Steinberg classification and subsequent surgical intervention. We defined Steinberg class IVC as failure in treatment because all of the patients referred for osteotomy, arthoplasty, or arthrodesis in our study were grade IVC or higher. Overall, 13 hips (26%) with unstable SCFE developed AVN. MRI revealed AVN in 7 of 17 hips (41%) at a mean of 2.5 months postoperatively (range, 1.0 to 5.2 months). Six hips diagnosed by MRI received surgical intervention (4 CBGE, 1 FVFG, and 1 repinning due to screw cutout) at a mean of 4.1 months (range, 1.3 to 7.2 months) postoperatively. None of the 4 patients treated with CBGE within two months postoperatively progressed to stage IVC AVN. The two patients treated after four months postoperatively both progressed to stage VC AVN. Radiographically diagnosed AVN occurred in 6 of 33 hips (18%) at a mean of 6.8 months postoperatively (range, 2.1 to 21.1 months). One patient diagnosed with stage IVB AVN at 2.4 months had screw cutout and received CBGE at 2.5 months from initial pinning. The remaining 5 were not offered surgical intervention. Five of the 6 radiographically diagnosed AVN, including the one treated with CBGE, progressed to stage IVC AVN or greater. None of the 4 patients with unstable SCFE treated with CBGE within 2 months post pinning developed grade IVC AVN, while all patients treated with other procedures after 2 months developed IVC or greater AVN. Early detection and treatment of AVN after SCFE may alter the clinical and radiographic progression


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_IV | Pages 150 - 150
1 Mar 2012
Bhaskar D Vishwanath S George V Jayakumar R Kovoor C
Full Access

We did a retrospective comparative analysis of twenty five patients treated with Ilizarov bone transport [IBT] and twenty one patients treated with vascularised fibular graft [VFG] from 1994 to 2003 in one institution, for post traumatic tibial bone defects of more than six centimetres. The aim of the study was to find out if there were any differences in achieving radiological end points, bone and functional score and return to work (final outcome), hospital stay and operating time (logistic factors) and complication rates. The mean defect size in the IBT group was 11.9 centimetres and in the VFG group 14.6 centimetres. Twenty one and sixteen patients in the IBT and VFG group respectively achieved the radiological end point that is union of the defect and graft hypertrophy [p 0.5]. Nineteen patients in the IBT group and fifteen in the VFG group returned to productive work [p 0.72]. Bone and functional results were analyzed by Paley's evaluation system and there were no significant differences in the two groups of patients [bone result p 0.97 and functional result p 0.1]. The logistic factors were significantly less of IBT group [p < 0.05]. Two patients in the IBT group and one patient in the VFG group had amputation and one patient in VFG group died. Three cases in the VFG group had flap loss. Stress fracture of the graft occurred in eight patients in the VFG group [p 0.0007]. The final outcome was same in both groups. Hospital stay, operating time and refractures were significantly less in IBT group


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 11 - 11
1 May 2012
Stalley P
Full Access

Prior to the 1970s, almost all bone sarcomas were treated by amputation. The first distal femoral resection and reconstruction was performed in 1973 by Dr Kenneth C Francis at the Memorial Sloan-Kettering Cancer Centre in New York. Since that time, limb-sparing surgery for primary sarcoma has become the mainstay of sarcoma surgery throughout the world. Initially, the use of mega-prostheses of increasing complexity, involving all the major long bones and both pelvic and shoulder girdles, was popularised. In the early 1980s, wide use of massive allograft reconstructions became widespread in both Europe and in multiple centres in the USA and UK. Since that time, increasing complexity in the design of prostheses has allowed for increasing functional reconstructions to occur, but the use of allograft has become less popular due to the development of late graft failures of patients survive past ten years. Fracture rates approaching 50% at 10 years are reported, and thus, other forms of reconstruction are being sought. Techniques of leg lengthening, and bone docking procedures to replace segmental bone loss to tumour are now employed, but the use of biological vascularised reconstructions are becoming more common as patient survivorship increases with children surviving their disease. The use of vascularised fibular graft, composite grafts and re-implantation of extra-corporeally irradiated bone segments are becoming more popular. The improvement in survivorship brought about the use of chemotherapy is producing a population of patients with at least a 65% ten year survivorship, and as many of these patients are children, limb salvage procedures have to survive for many decades. The use of growing prostheses for children have been available for some 25 years, first commencing in Stanmore, UK, with mechanical lengthening prostheses. Non-invasive electro-magnetic induction coil mechanisms are now available to produce leg lengthening, with out the need for open surgery. Whilst many of these techniques have great success, the area of soft tissue attachment to metallic prostheses has not been solved, and reattachment of muscles is of great importance, of course, for return of function. There are great problems in the shoulder joints where sacrifice of rotator cuff muscles is necessary in obtaining adequate disease clearance at the time of primary resection, and a stable shoulder construct, with good movement, has yet to emerge. Similar areas of great difficultly remain the peri-acetabular and sacro-iliac resections in the pelvis. Perhaps the real future of the art of limb salvage will be in the reconstruction of failed major joint replacements where there is great loss of bone stock, and already massive tumour prostheses are providing a salvage pathway for failed standard joint replacement. The final future for limb salvage, however, may not rest with increasing surgical complexity and innovation, but with the development of molecular biology and specific targeted treatments, according to the cytogenetics of a particular tumour. We are on the threshold of yet another quantum change in the approach to cancer management; just as chemotherapy brought a tremendous change in the 1970s, molecular biology is the frontier to make much of the current limb salvage surgery that is performed redundant