Introduction. Currently, different techniques to evaluate biocompatibility of orthopaedic materials, including two-dimensional (2D) cell culture for metal and ceramic
Introduction:. Unicompartmental knee arthroplasty (UKA) has been used in the past decades to treat progressive cartilage degeneration in a single compartment. Concern has been raised over the rate of revision procedures for polyethylene wear and osteoarthritic progression into the adjacent compartment. Few studies have examined the pathology of cartilage degeneration in the setting of UKA. This study aims to investigate the viability of knee chondrocytes introduced to high and low concentrations of orthopaedic
Introduction.
Summary. We report the first use of synchrotron xray spectroscopy to characterize and compare the chemical form and distribution of metals found in tissues surrounding patients with metal-on-metal hip replacements that failed with (Ultima hips) or without (current generation, large diameter hips) corrosion. Introduction. The commonest clinical category of failure of metal-on-metal (MOM) hip replacements is “unexplained” and commonly involved a soft tissue inflammatory response. The mechanism of failure of the Ultima MOM total hip replacement includes severe corrosion of the metal stem and was severe enough to be removed from clinical use. Corrosion is not a feature that we have found in the currently used MOM bearings. To better understand the biological response to MOM
Statement of Purpose:. The wear rate of Ultra High Molecular Weight Polyethylene (UHMWPE) in joint replacements has been correlated to both contact area and contact stress in the literature, [1], [2]. In both publications and our experiment, UHMWPE articulated with a polished surface of cobalt-chromium alloy was evaluated using a Pin-On-Disk (POD) apparatus (AMTI) implementing bi-directional movement. In publication [1], volumetric wear was independent of normal load and dependent upon increasing contact area. The results demonstrated that increasing contact stress decreased wear rates twofold. In publication [2], at maximum cross-shear, wear was proportional to nominal contact area and wear factors normalized to area are more appropriate than load based wear factors. In both studies, the contact surface areas of the POD pins were reduced by decreasing the diameters of the POD Pins. In our experiment, the contact area was dependent on textured POD Pin 390 (T390) which had low wear [3]. T390 reduced the normal POD contact area from 71 mm. 2. to 8.26 mm. 2. Hydroxylapatite (HA) particles were introduced to the serum to simulate third body
There have been numerous reports regarding “pseudotumor” associated with hip arthroplasty. We present two reports in which main etiology in the pseudotumor formation was titanium (Ti), but not cobalt-chromium (Co-Cr). We should keep in mind that Ti analysis is essential in some cases. (Case 1) A 68-year-old male presented to our institution because of right hip pain and lower extremity swelling four years after a bipolar hemiarthroplasty. MRI predicted a cystic pseudotumor. However, revision surgical findings showed no apparent cause of ARMD previously described in the literatures. Postoperative analysis showed that the metal debris mainly originated from the Ti alloy itself. (Case reports in Orthopedics, vol.2014, Article ID 209461, 4 pages) (Case 2) A 77-year-old female presented to our institution because of right hip pain and swelling six years after a total hip arthroplasty using a cable trochanteric reattchment. Plain radiographs demonstrated evidences of severe osteolysis and multiple fragments of the broken cable. However, MRI predicted a psudotumor(See Figure 1). Postoperative analysis clarified that main etiology in the pseudotumor formation was the stem mede of Ti, but not the cable made of Co-Cr.
Silicon nitride (SiN) is a recently introduced bearing material for THR that has shown potential in its bulk form and as a coating material on cobalt-chromium (CoCr) substrates. Previous studies have shown that SiN has low friction characteristics, low wear rates and high mechanical strength. Moreover, it has been shown to have osseointegration properties. However, there is limited evidence to support its biocompatibility as an implant material. The aim of this study was to investigate the responses of peripheral blood mononuclear cells (PBMNCs) isolated from healthy human volunteers and U937 human histiocytes (U937s) to SiN nanoparticles and CoCr wear particles. SiN nanopowder (<50nm, Sigma UK) and CoCr wear particles (nanoscale, generated in a multidirectional pin-on-plate reciprocator) were heat-treated for 4 h at 180°C and dispersed by sonication for 10 min prior to their use in cell culture experiments. Whole peripheral blood was collected from healthy donors (ethics approval BIOSCI 10–108, University of Leeds). The PBMNCs were isolated using Lymphoprep® as a density gradient medium and incubated for 24 h in 5% (v/v) CO2at 37°C to allow attachment of mononuclear phagocytes. SiN and CoCr particles were then added to the phagocytes at a volume concentration of 50 µm3 particles per cell and cultured for 24 h in RPMI-1640 culture medium in 5% (v/v) CO2 at 37°C. Cells alone were used as a negative control and lipopolysaccharide (LPS; 200ng/ml) was used as a positive control. Cell viability was measured after 24 h by ATPLite assay and tumour necrosis factor alpha (TNF-α) release was measured by sandwich ELISA. U937s were co-cultured with SiN and CoCr particles at doses of 0.05, 0.5, 5 and 50 µm3 particles per cell for 24h in 5% (v/v) CO2 at 37 C. Cells alone were used as a negative control and camptothecin (2 µg/ml) was used as a positive control. Cell viability was measured after 0, 1, 3, 6 and 9 days. Results from cell viability assays and TNF-α response were expressed as mean ±95% confidence limits and the data was analysed using one-way ANOVA and Tukey-Kramer post-hoc analysis.Introduction
Methods
Orthopaedic cobalt chromium particles and ions can induce indirect DNA damage and chromosome aberrations in human cells on the other side of a cellular barrier in tissue culture. This occurs by intercellular signalling across the barrier. We now show that the threshold for this effect depends on the metal form and the particle composition. Ionic cobalt and chromium induced single strand breaks at concentrations equivalent to those found in the blood of patients with well functioning metal on metal hip prostheses. However, they only caused double strand breaks if the chromium was present as chromium (VI), and did not induce chromosome aberrations. Nanoparticles of cobalt chromium alloy caused DNA double strand breaks and chromosome aberrations, of which the majority were tetraploidy. Ceramic nanoparticles induced only single strand breaks and/or alkaline labile sites when indirectly exposed to human fibroblasts. The assessment of reproductive risk from maternal exposure to biomaterials, especially those liberated by orthopaedic implants, is not yet possible with epidemiology. Whilst the barrier model used here differs from the in vivo situation in several respects, it may be useful as a framework to evaluate biomaterial induced damage across physiological barriers.
Aims. The STRYDE nail is an evolution of the PRECICE Intramedullary Limb Lengthening System, with unique features regarding its composition. It is designed for load bearing throughout treatment in order to improve patient experience and outcomes and allow for simultaneous bilateral lower limb lengthening. The literature published to date is limited regarding outcomes and potential problems. We report on our early experience and raise awareness for the potential of adverse effects from this device. Methods. This is a retrospective review of prospective data collected on all patients treated in our institution using this implant. We report the demographics, nail accuracy, reliability, consolidation index, and cases where concerning clinical and radiological findings were encountered. There were 14 STRYDE nails implanted in nine patients (three male and six female) between June 2019 and September 2020. Mean age at surgery was 33 years (14 to 65). Five patients underwent bilateral lengthening (two femoral and three tibial) and four patients unilateral femoral lengthening for multiple aetiologies. Results. At the time of reporting, eight patients (13 implants) had completed lengthening. Osteolysis and periosteal reaction at the junction of the telescopic nail was evident in nine implants. Five patients experienced localized pain and swelling. Macroscopic appearances following retrieval were consistent with corrosion at the telescopic junction. Tissue histology was consistent with effects of focal metallic
Objectives. Several studies have reported elevated blood cobalt (Co) and chromium (Cr) concentrations in patients with total knee replacements (TKRs). Up to 44% of tissue samples taken from patients with failed TKRs exhibit histological evidence of metal sensitivity/ALVAL. In simulated conditions, metal particles contribute approximately 12% of total
Introduction. Significant reduction in the wear of current orthopaedic bearing materials has made it challenging to isolate
Currently, different techniques to evaluate the biocompatibility of orthopaedic materials, including two-dimensional (2D) cell culture for metal/ceramic
A concern of metal on metal hip resurfacing arthroplasty is long term exposure to Cobalt (Co) and Chromium (CR)
BACKGROUND. The most common salvage of a failed metal-on-metal hip resurfacing is to remove both the femoral and acetabular resurfacing components and perform a total hip replacement. The other choices are to perform an acetabular or femoral only revision. A one or two piece acetabular component or a polyethylene bipolar femoral component that matches the retained metal resurfacing acetabular component is used. The considerations in favor of performing a one component resurfacing revision are maintaining the natural femoral head size, limiting the surgical effort for the patient and surgeon, and bone conservation. There are often favorable cost considerations with single component revision surgery. The reasons for femoral component revision are femoral neck fracture, femoral component loosening and an adverse reaction to metal
Introduction. When osteoarthritis occurs, joint replacement is the most frequent treatment. Currently, the mean survival rate for total joint arthroplasty is ∼90% after 10 years: the main reason for long-term implant failure, that generally required a revision surgery, are osteolysis and aseptic loosening of the implant, which are strongly correlated with
Traditional procedures for orthopedic total joint replacements have relied upon bone cement to achieve long-term implant fixation. This remains the gold standard in number of procedures including TKR and PKR. In many cases however, implants fixed with cement have proven susceptible to aseptic loosening and 3. rd. body wear concerns. These issues have led to a shift away from cement fixation and towards devices that rely on the natural osteoconductive properties of bone and the ability of porous-coated implants to initiate on-growth and in-growth at the bone interface, leading to more reliable fixation. To facilitate long-term fixation through osseointegration, several mechanical means have been utilized as supplemental mechanism to aid in stabilizing the prostheses. These methods have included integrated keels and bone screws. The intent of these components is to limit implant movement and provide a stable environment for bone ingrowth to occur. Both methods have demonstrated limitations on safety and performance including bone fracture due keel induced stresses, loosening due to inconsistent pressfit of the keel, screw-thread stripping in cancellous bone, head-stripping, screw fracture, screw loosening, and screw pullout. An alternative method of fixation utilizing blade-based anchoring has been developed to overcome these limitations. The bladed-based fixation concept consists of a titanium alloy anchor with a “T-shaped” cross-section and sharped-leading end that can be impacted directly into bone. The profile is configured to have a bladed region on the horizontal crossbar of the “T” for engagement into bone and a solid rail at the other end to mates with a conforming slot on the primary body of the prosthesis. A biased chisel tip is added to the surface of the leading blade edge to draw the bone between the anchor's horizontal surface and surface of the implant, thus generating a compressive force at the bone-to-prothesis interface. The anchoring mechanism has been successfully been integrated into the tibial tray component of a partial knee replacement; an implant component that has a clinical history of revision due to loosening. A detailed investigation into the pulloff strength,
Introduction. Particle-induced oxidative stress in cells is a unifying factor that determines toxicity and carcinogenicity potential in biomaterials. A previous study by Bladen et al. showed the production of significant levels of reactive oxygen species (ROS) following the stimulation of phagocytes by UHMWPE and CoCr
Introduction. The bearing surfaces of ceramic-on-ceramic (CoC) total hip replacements (THR) show a substantially lower wear rate than metal-on-polyethylene (MoP) THR in-vitro. However, revision rates for CoC THR are comparable with MoP. Our hypothesis that an explanation could be adverse reaction to metal debris (ARMD) from the trunnion led us to investigate the wear at both the bearing surfaces and the taper-trunnion interface of a contemporary CoC THR in an in-vitro study. Methods. Three 36mm CoC hips were tested in a hip simulator for 5 million cycles (Mc). BIOLOX. ®. delta ceramic femoral heads were mounted on 12/14 titanium (Ti6Al4V) trunnions. Wear of femoral heads, acetabular liners and trunnions was determined gravimetrically using the analytical balance. Roughness measurements (Sa) were taken on the articulating surfaces (pre and post-test) and on the trunnion surfaces (worn and unworn). Furthermore, Energy Dispersive X-ray Spectroscopy (EDX) was used to identify and quantify the
Introduction. The STRYDE nail is an evolution of the PRECICE Intramedullary Limb Lengthening System, with unique features regarding its composition. It is designed for load bearing throughout treatment in order to improve patient experience and outcomes and allow for simultaneous bilateral lower limb lengthening. The literature published to date is limited with regards to both outcomes and potential issues. In this paper we report on our early experience and raise awareness for the potential of adverse effects from this device. Materials and Methods. This is a review of all patients treated in our institution using this implant. Data were prospectively recorded. We report on demographics, nail accuracy, reliability, consolidation index and cases where concerning clinical and radiological findings were encountered. Results. 14 Stryde nails were implanted in nine patients (three males and six females) between June 2019 and September 2020. Mean age at surgery was 33 years old (14–65 years old). Five patients underwent bilateral lengthening (two femoral and three tibial) and four patients unilateral femoral lengthening for multiple aetiologies. By the time of this report eight patients (13 implants) had completed lengthening. Osteolysis and periosteal reaction at the junction of the telescopic nail was evident in nine implants. Five patients experienced localised pain and swelling. Macroscopic appearances following retrieval were consistent with corrosion at the telescopic junction. Tissue histology was consistent with effects of focal metallic
Introduction. Experimental wear simulation of an all-polymer knee implant has shown an equivalent rate of wear of UHMWPE tibial components against PEEK-OPTIMA™ and cobalt chrome femoral components of a similar initial geometry and surface topography. However, when the patella is resurfaced with an UHMWPE patella button, it is important to also ascertain the wear of the patella.