Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVII | Pages 44 - 44
1 Jun 2012
Akel I Tanrikulu S Demirkiran G Marcucio R Acaroglu R
Full Access

Introduction

Previous work has shown that C57BL/6 mice develop scoliosis when rendered bipedal. Our previous work suggested that tamoxifen (TMX) might change the natural course of scoliosis when administered before scoliotic curves develop. We analysed whether the incidence of scoliosis or the magnitude of curves may be decreased by the administration of tamoxifen after curves are observed.

Methods

20 female, 3-week-old C57BL/6 mice underwent amputations of forelimbs and tails at 3 weeks, 18 of which were included in analyses. Posteroanterior scoliosis radiographs were obtained at week 20, and scoliotic curves were recorded. After week 20, all mice received 10 mg TMX per L of daily water supply for 20 weeks. The course of deformities in this group (week 20 group) was compared with that of previous study groups (receiving TMX from week 3; week 3 group).


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVII | Pages 52 - 52
1 Jun 2012
Akel I Demirkiran G Olgun D Tanrikulu S Dede O Marcucio R Acaroglu R
Full Access

Introduction

Forelimb and tail amputations of 3-week-old C57BL/6 mice are known to yield spinal curves similar to adolescent idiopathic scoliosis (AIS). Our previous work showed that tamoxifen produces a significant decrease in severity of these curves. Vertebral osteoporosis was thought to be related to AIS. Interestingly, a histological pilot study has shown that scoliotic mice given tamoxifen were less osteoporotic than were controls. Raloxifene is an oestrogen receptor modulator (SERM) similar to tamoxifen with a more specific effect on bone and is commonly used to treat osteoporosis. We aimed to study and compare the effects of tamoxifen and raloxifene on the rate and magnitude of scoliosis on a C57BL/6 mice model.

Methods

90 female 3-week-old C57BL/6 mice underwent amputations of forelimbs and tails. 78 were available for analysis and were grouped as control (no medications; n=24), TMX group (10 mg tamoxifen/L drinking water; n=30), and RLX group (10 mg raloxifene/L drinking water; n=241). Seven mice from each group (including scoliotic ones) were killed for histological study at week 20 after posteroanterior (PA) scoliosis radiograph examinations. The rest were killed at the end of week 40 after PA radiographs were obtained. Radiographs were assessed for presence and magnitude of spinal curves.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_IV | Pages 561 - 561
1 Oct 2010
Ayvaz M Acaroglu R Akalan N Alanay A Yazici M
Full Access

Introduction: After the introduction of MRI in routine diagnostic work-up, Split cord malformations (SCM) in patients with Congenital spinal deformities (CSD) is more easily diagnosed and probably overtreated.

Aim: To evaluate the necessity of neurosurgical management of SCM before corrective spinal surgery.

Study Design: Retrospective case series

Patients and Methods: Thirty-two patients aged 11 years + 8 months (4–18 years) with CSDs with a follow up of 51,7+/−26,6 months were analyzed. SCM were classified as Type I(septum dividing the spinal cord and dura into two separate hemicords) and Type II(two hemicords within single dura) according to Pang. Eighteen patients with type I underwent neurosurgical intervention (spur excision and creating a single dural cuff) before corrective surgery (15 sequential and 3 simultaneous). Fourteen patients with type II were treated with posterior instrumentation without dealing with the intraspinal abnormalities. The basic maneuvers were translation, compression and shortening to realign spinal column, avoiding distraction forces and intrusion of any instrument into the spinal canal around anomalous segments. Neurological monitoring was done by the wake-up test.

Results: At final follow up, scoliosis improved from 65,7+/−22 to 37+/−15 degrees (45%) in type I and from 74,3+/−21,8 to 39,4+/−18,7 degrees (47%) in type II. The correction loss was 2,3 degrees in patients with type I SCM and 2,9 degrees in patients with type II SCM. One patient with type I SCM had paraparesis resulting from a misplaced upper thoracic pedicle screws with total recovery after revision. Another patient with type I SCM who had simultaneous surgeries had deterioration of her preoperative neurological deficit only to recover partially. Two patients with type I SCM and one patient with type II SCM developed deep wound infections and needed multiple debridements. Two patients with type I SCM had dural leakage that needed repair.

Conclusion: Although it is a common practice to operate all SCMs before corrective surgery in CSD, it may not be necessary in type II which can be managed safely without any neurosurgical intervention.