This study aimed to assess whether the severity of symptoms (assessed with the Oxford Hip Score (OHS)) can relate to the levels of mRNA expression of markers for muscle inflammation (tumour necrosis factor alpha (TNFα), interleukin 6 (IL-6)) in the proximal vastus lateralis (VL) of patients with severe OA undergoing THR. Following local research ethics approval and informed consent, 17 patients were prospectively recruited. Muscle biopsies were obtained from the proximal VL (accessed through the surgical wound) intraoperatively whilst the OHS questionnaire was administered preoperatively. mRNA expression for TNFα and IL-6 was assessed using the reverse transcriptase polymerase chain reaction (RT-PCR). The median OHS was used for stratification, with patients above the median classed as having moderate symptoms (MS) and those below classed as having severe symptoms (SS). The effect of SS on muscle inflammation was assessed with relative quotient (RQ) comparison of SS vs. MS mRNA expression.Aim
Methods
To assess whether the Oxford Hip Score (OHS), is reflective of objectively assessed functional performance (timed up and go (TUG), 30 sec sit to stand (ST), 6 minute walk test (6MWT), stair climb performance (SCP), and gait speed (GS)) in patients undergoing total hip arthroplasty (THA). 50 patients undergoing THA were prospectively recruited after ethical approval. Demographics and objective physical performance were assessed (TUG, ST, 6MWT, SCP, GS), as was the OHS preoperatively, and at 6 weeks, 6 months and 9 to 12 months postoperatively. Pearson's correlation coefficient was used to assess relationships, with p<0.05 statistically significant.Aim
Methods
To assess the relationship between mRNA expression of genetic markers of inflammation (tumour necrosis factor-alpha (TNFα)) and interleukin-6 (IL-6) in the vastus lateralis (VL) of the operated leg, and the strength of the operated leg quadriceps, in patients following THR. Following ethical approval, 10 patients were recruited prospectively. Distal VL (5cm proximal to lateral supra-patellar pouch) biopsies were obtained intraoperatively and at 6 weeks post-operatively, with maximal voluntary contraction of the operated leg quadriceps (MVCOLQ) in Newtons(N), assessed preoperatively and at 6 weeks post-op. mRNA expression in the biopsies was assessed using the reverse transcriptase polymerase chain reaction (RT-PCR). Relationships were assessed using Spearman's correlation coefficient (data not normally distributed).Aim
Methods
Late (commenced 6 months to 4 years post-op) home-based progressive resistance training programs are proven to improve muscle strength and function after total hip replacement (THR). This study assessed whether early (commenced < 1 week post-op) HBPRT post-THR improves muscle mass, strength and function relative to routine physiotherapy rehabilitation (RPR) at up to 12 months follow up. Prospective single blind randomized controlled study performed after ethical approval. 50 patients randomised to 6 week HBPRT (n=26) or RPR (n=24) postoperatively. Maximal voluntary contraction of the operated leg quadriceps in (MVCOLQ) in Newtons (N), sit to stands in 30 seconds (ST, number of repetitions), and the lean mass in grams of the operated leg (LM) were assessed preoperatively and at intervals up to 12 months postoperatively. Mixed model repeated measures ANOVA was used for statistical analysis.Introduction
Methods
Bone marrow derived mesenchymal stem cells are a potential source of cells for the repair of articular cartilage defects. Hypoxia has been shown to improve chondrogenesis in adult stem cells. In this study we characterised bone marrow derived stem cells and investigated the effects of hypoxia on gene expression changes and chondrogenesis. Adherent colony forming cells were isolated and cultured from the stromal component of bone marrow. The cells at passage 2 were characterised for stem cell surface epitopes, and then cultured as cell aggregates in chondrogenic medium under normoxic (20% oxygen) or hypoxic (5% oxygen) conditions for 14 days. Gene expression analysis, glycosoaminoglycan and DNA assays, and immunohistochemical staining were determined to assess chondrogenesis.INTRODUCTION
MATERIALS AND METHODS
Mesenchymal stem cells are a potential source of cells for the repair of articular cartilage defects. We have previously demonstrated that the infrapatellar synovial fat pad is a rich source of mesenchymal stem cells and these cells are able to undergo chondrogenic differentiation. Although synovial fat pad derived mesenchymal stem cells may represent a heterogenous population, clonal populations derived from the synovial fat pad have not previously been studied. Mesenchymal stem cells were isolated from the infrapatellar synovial fat pad of a patient undergoing total knee arthroplasty and expanded in culture. Six clonal populations were also isolated before initial plating using limiting dilution and expanded. The cells from the mixed parent population and the derived clonal populations were characterised for stem cell surface epitopes, and then cultured as cell aggregates in chondrogenic medium for 14 days. Gene expression analyses; glycosoaminoglycan and DNA assays; and immunohistochemical staining were determined to assess chondrogenic responses.Introduction
Materials and Methods