Slipped capital femoral epiphysis is an important orthopaedic problem of early adolescence. Many hypotheses about its etiology have been proposed; still the underlying mechanisms are not clearly understood. The aim of our paper is to examine radiographic characteristics of hips at risk for slipped capital epiphysis. Two groups of hips were compared: a group of 100 asymptomatic hips contralateral to the slipped ones and a group of 70 age- and gender-matched healthy hips. The hips contralateral to the slipped ones were assumed to have identical morphology to the preslip-page morphology of the slipped hips. In each hip the following radiographic parameters were measured: the inter-hip distance, the femoral neck length/width, the pelvic height, the pelvic width, the femoral head radius, the coordinates of the abductor muscles trochanteric attachment, the inclination of the femoral epiphyseal growth plate, the femoral neck-shaft angle and the Wiberg center-edge angle. Subjects with hips at risk for slipping had significantly higher body weight (590 vs. 500 N; p <
0.001), larger diameter of the femoral neck (38.6 vs 37.3 mm; p = 0.027), higher (138.9 vs. 134.6 mm; p = 0.022) and wider pelvis (53.8 vs. 48.7 mm; p <
0.001) and more laterally placed abductor muscles trochanteric attachment. There were no significant differences in the inter-hip distance, the femoral head radius, the femoral neck length and the femoral neck-shaft angle angle. Hips contralateral to the slipped ones had a more vertically inclined physeal angle (55.4 vs. 63.2 degrees; p <
0.001) in comparison to the healthy hips. The Wiberg centre-edge angle of the hips contralateral to the slipped ones was on average 7% larger from the healthy group (34.7 vs. 32.2 degrees; p = 0.003). Children with hips at risk for slipping had larger pelvices and femora with more vertically inclined femoral epiphyseal growth plate. In addition, one cannot overlook the significant difference in the body weight between the age- and gender-matched groups of our study, confirming previous findings on the role of body weight in SCFE. It is therefore possible that anatomical changes may be a downstream effect of bone remodelling caused by altered loading during growth and development. This may suggest that the predisposition of the hip to slipping occurs earlier in the patient’s lifetime and that targeted radiographic examinations in obese individuals could reveal changes in pelvic geometry even before adolescence. Considering the high rates of bilateral involvement, our results could be used to predict the need for preventive fixation of asymptomatic hips after the capital femoral epiphysis has slipped in the contralateral hip.
On the first to second day after birth, equinus, varus, forefoot adduction, calcaneopedal block derotation degree, reducibility characteristics, creases, cavus and muscle condition are evaluated using the clubfoot severity scale, and a long-leg cast is applied. Casting is preceded by the Ponseti treatment: the first ray is dorsiflexed while maintaining finger pressure on the talar neck just in front of the lateral maleolus in the external rotation and abductus. Immobilization is interrupted by redressive manipulation therapy depending on the clubfoot appearance and parents’ participation. Redressive manual and casting therapies typically provide good correction of the foot; yet the equinus persists in the majority of cases. The undercorrected equinus is the major reason for one-stage surgery, consisting of postero-medial-lateral release, capsulotomies and à-la-carte tendon elongation through the modified Cincinnati incision, done at the age of 7 to 9 months. As a rule forefoot derotation and heel fixation are not necessary. There are no skin problems or oedema, and the child usually stays in hospital only for one day after surgery. The outcome, however, is unpredictable even in a fully corrected foot. After surgery, the foot is regularly checked for a potential adductus, lack of dorsiflexion and cavus, and redressive therapy is promptly instituted. Any residual deformation resistant to conservative measures is treated surgically. In the long term, children should as a rule wear ordinary shoes. A typical reoperation – medial release with sectioning of the plantar fascia – is required in approx.10% of cases. Derotation below the knee and transposition of the tibialis anterior tendon are less frequent. At this Department, complete re-correction is required in less than 1% of cases.
We analysed revised Mathys isoelastic polyacetal femoral stems with stainless-steel heads and polyethylene acetabular cups from eight patients in order to differentiate various types of particle of wear debris. Loosening of isoelastic femoral stems is associated with the formation of polyacetal wear particles as well as those of polyethylene and metal. All three types of particle were isolated simultaneously by tissue digestion followed by sucrose gradient centrifugation. Polyacetal particles were either elongated, ranging from 10 to 150 μm in size, or shred-like and up to 100 μm in size. Polyethylene particles were elongated or granules, and were typically submicron or micronsized. Polyacetal and polyethylene polymer particles were differentiated by the presence of BaSO4, which is added as a radiopaque agent to polyacetal but not to polyethylene. This was easily detectable by back-scattered SEM analysis and verified by energy dispersive x-ray analysis. Two types of foreign-body giant cell (FBGC) were recognised in the histological specimens. Extremely large FBGCs with irregular polygonal particles showing an uneven, spotty birefringence in polarised light were ascribed to polyacetal debris. Smaller FBGCs with slender elongated particles shining uniformly brightly in polarisation were related to polyethylene. Mononucleated histiocytes containing both types of particle were also present. Our findings offer a better understanding of the processes involved in the loosening of polyacetal stems and indicate why the idea of ‘isoelasticity’ proved to be unsuccessful in clinical practice.