Bone and joint infection (BJI) is often characterized by severe inflammation and progressive bone destruction. Osteocytes are the most numerous and long-lived bone cell type, and therefore represent a potentially important long-term reservoir of bacterial infection. SaOS2 cells (1 ×104 cells/cm2) were grown to confluence either without differentiation, representing an osteoblast-like (OB) state (SaOS2-OB) or differentiated to an osteocyte-like stage (SaOS2-OY), using established methods. Four Introduction
Methods
We conducted a systematic review of the literature to determine the current evidence for the efficacy of antibiotics against intracellular SA infections relevant to osteomyelitis. For the antibiotics identified as potentially useful, we determined their minimal inhibitory concentration (MIC) against 11 clinical osteomyelitis SA- isolates. We selected those for further testing reported able to reach a higher concentration in the bone than the identified MIC against the majority of strains. Thus, rifampicin, oxacillin, linezolid, levofloxacin, oritavancin and doxycycline were tested in human SaOS-2-osteocyte infection models (Gunn et al., 2021) of acute (1d) or chronic (14d) infection to clear intracellular SA. Antibiotics were tested at 1x/4x/10x the MIC for the duration of 1d or 7d in each model. A systematic review found that osteoblasts and macrophages have mostly been used to test immediate short-term activity against intracellular SA, with a high variability in methodology. However, some extant evidence supports that rifampicin, oritravancin, linezolid, moxifloxacin and oxacillin may be effective intracellular treatments. While studies are ongoing, in vitro testing in a clinically relevant model suggests that rifampicin, oxacillin and doxycycline could be effectively used to treat osteomyelitic intracellular SA infections. Importantly, these have lower MICs against multiple clinical isolates than their respective clinically-achievable bone concentrations. The combined approach of a systematic review and disease-relevant in vitro screening will potentially inform as to the best approach for treating osteomyelitis where intracellular SA infection is confirmed or suspected.
Periprosthetic joint infection (PJI) is a potentially devastating complication of joint replacement surgery. Osteocytes comprise 90–95% of all cells in hard bone tissue, are long-lived and are becoming increasingly recognised as a critical cell type in the regulation of bone and systemic physiology. The purpose of this study was to examine role of these cells in PJI pathophysiology and aetiology, with the rationale that their involvement could contribute to the difficulty in detecting and clearing PJI. This study examined the ability of human osteocytes to become infected by Staphylococcus aureus and the responses of both the host cell and pathogen in this scenario. Several S. aureus (MRSA) strains were tested for their ability to infect human primary osteocyte-like cells in vitro and human bone samples ex vivo. Bone biopsies were retrieved from patients undergoing revision total hip arthroplasty for either aseptic loosening associated with osteolysis, or for PJI. Retrieved bacterial colony number from cell lysates and colony morphology were determined. Gene expression was measured by microarray/bioinformatics analysis and/or real-time RT-PCR. Exposure to planktonic S. aureus (approx. 100 CFU/cell) resulted in intracellular infection of human osteocyte-like cells. We found no evidence of increased rates of osteocyte cell death in bacteria exposed cultures. Microarray analysis of osteocyte gene expression 24h following exposure revealed more than 1,500 differentially expressed genes (fold-change more than 2, false discovery rate p < 0.01). The gene expression patterns were consistent with a strong innate immune response and altered functionality of the osteocytes. Consistent patterns of host gene expression were observed between experimentally infected osteocyte-like cultures and human bone, and in PJI patient bone samples. Internalised bacteria switched to the quasi-dormant small colony variant (SCV) form over a period of 5d, and the ensuing infection appeared to reach a stable state. S. aureus infection of viable osteocytes was also identified in bone taken from PJI patients. We have demonstrated [1] that human osteocytes can become infected by S. aureus and respond robustly by producing immune mediators. The bony location of the infected osteocyte may render them refractory to clearance by immune cells, and osteocytes may therefore be an immune-privileged cell type. The phenotypic switch of S. aureus to SCV, a form less sensitive to most antibiotics and one associated with intracellular survival, suggests that infection of osteocytes may contribute to a chronic disease state. The osteocyte may therefore serve as a reservoir of bacteria for reinfection, perhaps explaining the high prevalence of infections that only become apparent after long periods of time or recur following surgical/medical treatment. Our findings also provide a biological rationale for the recognised need for aggressive bone debridement in the surgical management of PJI.
Sclerostin has been implicated in mechanotransduction in bone and recent data show a lack of response to loading in the sclerostin transgenic mouse. Sclerostin, the protein product of the SOST gene, is an attractive therapeutic target for low bone mass conditions, including osteoporosis. It is expressed exclusively by mature osteocytes in bone and we have shown that sclerostin targets pre-osteocytes/osteocytes to regulate bone mineralization and osteoclast activity, as well as inducing catabolic gene expression in osteocytes themselves and promoting osteocyte-mediated bone loss (osteocytic osteolysis). The aim of this study was to examine the direct effects of sclerostin on anabolic responses to loading in bone ex vivo. 10 × 5mm bovine sternum trabecular bone cores were perfused with osteogenic media at 37°C for up to 3 weeks in individual bone culture chambers. The cores were divided into 3 groups; a) mechanically loaded (300 cycles, 4000 μstrain, 1 Hz/day), b) identical loading regime with continuous perfusion of 50 ng/ml recombinant human sclerostin and c) unloaded controls. Loading was accomplished using a second-generation Zetos™ bone loading system. Daily measurements of bone stiffness (Young's modulus), media pH and ionic calcium concentrations were made. Histomorphometric assessment, including fluorochrome labelling analysis, was made of resin-embedded, non-decalcified samples at the end of the experiment. Gene expression in the bovine bone was examined by real-time RT-PCR.Introduction
Methods
Osteoclast Associated Receptor (OSCAR) is a novel member of leucocyte receptor complex (LCR)-encoded family expressed by pre-osteoclasts and mature osteoclasts (OC). Blocking of OSCAR binding to its putative ligand has been shown to inhibit osteoclast formation. To date there is no data available regarding the expression of OSCAR in tissues associated with osteolysis and the objective of this study is to determine if OSCAR is expressed adjacent to focal bone osteolysis near failed implants. A total of 22 samples (10 Peri-implant tissue and 12 OA) were studied. OSCAR antibodies were a gift from R&
D Systems Inc. (Minneapolis, MN, USA). The tissues were analysed semi-qualitatively using semi-quantitative scoring (SQA) independently by two observers. Non-parametric Mann Whitney-U test was used to test statistical significance. Dual labelling for OSCAR and CD68 expression was also carried out. Strong expression of OSCAR was seen in the majority of multinucleated cells in peri-implant tissues while OA tissues showed very low levels of OSCAR expression. Dual labelling studies revealed that the cells expressing OSCAR also expressed CD68. There was a significant difference in the expression of OSCAR between peri-implant tissue and OA synovial tissue (p<
0.003). This study shows that OSCAR is expressed at high levels by the numerous CD68 multinucleated cells present is these tissues in peri-implant tissues. These findings and recent reports on the role OSCAR may play in OC formation indicate that OSCAR could be an important mediator of peri-implant osteolysis
There is growing evidence that RANKL (also known as osteoclast differentiation factor), its receptor RANK and its natural inhibitor osteoprotegerin (OPG) are involved in bone loss in a number of pathologies. The aim of this study was to determine if these factors are expressed in a number of bone loss pathologies and what cell types were producing these factors in the tissues using reverse transcription polymerase chain reaction (RT-PCR), in situ hybridisation and immunostaining techniques. Periarticular tissue was obtained from 15 patients undergoing revision of aseptic loose implants. Rheumatoid joint tissue was obtained from the pannus region of 12 patients diagnosed with rheumatoid arthritis undergoing joint replacement or joint fusion. Inflamed gingival tissue from sites near bone erosion were obtained from 11 patients with periodontal disease. 6 normal periodontal and periarticular tissue from 6 osteoarthritic patients was used as controls. RANK, RANKL, OPG and M-CSF mRNA were expressed in tissues obtained from all the pathologies. Higher ratio’s of RANKL to OPG were observed in the pathological tissues compared to their respective controls. In revision tissues many multinucleated giant cell containing particles expressed RANK mRNA. The pattern of staining of RANK mRNA was markedly different in the rheumatoid and periodontal tissues. Differences were also seen in the pattern of expression for RANKL using both in situ and immunostaining. Overall our results indicate that although similar osteoclastogenic factors are fundamentally involved in these bone loss pathologies, different cell types may be producing and/or responding to these factors. Identifying fundamental mechanisms such as these may indicate that similar treatments, such as using OPG or related compounds, may be used for a diverse range of bone loss diseases.
The cellular and molecular mechanisms that lead to particular trabecular structures in healthy bone and in skeletal disease, such as osteoarthritis (OA), are poorly understood. Osteoclast differentiation factor (ODF) is a newly described regulator of osteoclast formation and function, whose activity appears to be a balance between interaction with its receptor, RANK, and with an antagonist binding protein, osteoprotegerin (OPG). We have examined the relationship between the expression of ODF, RANK and OPG mRNA, and parameters of bone structure and turnover, in human trabecular bone. Intertrochanteric trabecular bone was sampled from patients with primary hip OA (n=13; median age 66 years) and controls taken at autopsy (n=12; median age 68.5 years), processed for histomorphometric analysis and RNA isolated for RT-PCR analysis of ODF, RANK and OPG mRNA expression. The ratios of ODF/OPG and ODF/RANK mRNA are significantly lower in OA (1.78±0.98; 0.59±0.31) compared to the controls (3.41±1.94, p<
0.02; 2.53±1.5, p<
0.001). This suggests that in OA there is less ODF mRNA available per unit RANK mRNA, and that osteoclast formation may be reduced. Furthermore, eroded bone surface (ES/BS[%]) was significantly lower (p<
0.05) in the OA group (6.37±3.17) compared to controls (9.74±4.53). Stong associations were found between the ratio of ODF/OPG mRNA and bone volume (ODF/OPG vs BV/TV[%], r=−0.67; p0.05) and bone turnover (ODF/OPG vs ES/BS, r=0.93; p<
0.001; ODF/OPG vs osteoid surgace (OS/BS[%], r=0.80; p<
0.001) in controls. In contrast to controls, these relationships were not evident in the OA group, suggesting that bone turnover maybe regulated differently in this disease.
We have used a culture system of human peripheral blood mononuclear cells (PBMC)as a source of osteoclast (OC) precursors and murine stromal cells to define the cytokine environment in which human OC form, and to determine the separate contributions of the stromal and haemopoietic elements. We designed a panel of reverse transcription-polymerase chain reaction (RT-PCR) primers that specifically amplify the respective murine or human mRNA species that correspond to cytokines and their receptors previously shown to promote or inhibit OC formation. Murine ST-2 cells and human PBMC were cocultured for up to 21 days in the presence of 1,25(OH) 2vitD3, dexamethasone and human macrophage-colony stimulating factor (M-CSF). OC formation was monitored by the appearance of cells that were positive for tartrate resistant acid phosphatase and able to form resorption lacunae on slices of dentine. We found that the ST-2 cells in these cultures expressed mRNA encoding a repertoire of many of the reported osteoclastogenic factors, as well as the recently described OC differentiation factor (ODF/RANKL). The stromal cells also expressed mRNA encoding osteoprotegerin (OPG), a potent inhibitor of OC formation. We found that agonists and antagonists of OC formation were expressed by both the stromal cells and the PBMC. RANK, the receptor for ODF/RANKL, was expressed only by the PBMC as were IL-1R2 and c-FMS. We identified three features of the cytokine environment that may be a characteristic of normal OC formation. Firstly, the ratio of mouse ODF:OPG mRNA was found to increase during the cocultures, consistent with a key role for ODF in the promotion by stromal cells of OC formation. Secondly, we found that mRNA encoding IL-1 and IL-17, as well as IL-6 and sIL-6R, were coordinately expressed by the PBMC. Thirdly, analysis of the culture medium showed that the PBMC secreted IL-1, IL-6 and TNF-alpha protein only in coculture with ST-2 cells during the first few days of osteoclast development. Similarly, prostaglandin E2, shown to synergise with ODF during OC development, was secreted only in cocultures. Together, these data show OC develop in a complex cytokine environment and suggest that haemopoietic cells provide signals to stromal cells during OC development. Work is in progress to extend these studies to human PBMC interacting with normal human osteoblasts.
Wear particles are thought to be a major factor causing osteolysis that leads to aseptic loosening. The aim of this study was to investigate the role of primary regulators of osteoclast development, RANKL (also known as osteoclast differentiation factor), its receptor RANK and natural inhibitor osteoprotegerin (OPG) in aseptic loosening. Cells were isolated from periprosthetic tissues taken at revision from more than 30 patients and the expression of these mediators in vivo was assessed using semi-quantitative reverse transcription polymerase chain reaction (RT-PCR). These cells were also cultured on dentine to determine their ability to become mature osteoclasts. In situ hybridisation using DIG labelled riboprobes specific for RANK mRNA was used to identify cells likely to become osteoclasts. We were able to compare revison tissues containing several different types of prosthetic wear particles. RANKL, RANK and OPG mRNA were found in samples of periprosthetic revision tissues. Cells derived from this tissue developed into mature osteoclasts capable of resorbing dentine. Cells that rapidly formed osteoblasts expressed a fifteen fold higher ratio of RANKL:OPG mRNA. In situ hybridisation showed RANK expression by macrophages and giant cells, many of which contained wear particles. Significantly, cells from tissues containing silastic wear particles expressed higher levels of RANKL relative to OPG and more produced large numbers of osteoclasts in vitro. This study shows that different bio materials in a particulate form may differ in their ability to form osteoclasts and that the relative levels of RANKL and OPG are likely to be important in determining if osteolysis will occur. In the future molecules that inhibit RANKL binding, such as OPG, may be considered for therapy of periprosthetic osteolysis.