Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 139 - 139
1 Nov 2021
Müller M Thierbach M Aurich M Wildemann B
Full Access

Introduction and Objective

The rupture of the anterior cruciate ligament is a common sports injury and surgical reconstruction is often required to restore full function of the knee. Hamstring tendons are usually used as autografts. In addition to knee pain and stiffness, infections are feared complications after surgery. Incubation of the autograft in a vancomycin solution until implantation reduced the infection rate by about ten-fold. Recent studies showed no negative effect of vancomycin on the biomechanical properties of porcine tendons. A negative effect of high vancomycin concentrations on chondrocytes and osteoblast is reported, but the effect on tendon and tenocytes is not known.

Materials and Methods

Rat Achilles tendons or isolated tenocytes were incubated with an increasing concentration of vancomycin (0 – 10 mg). Tendons were incubated for 0 – 40 minutes, while tenoyctes were incubated for 20 minutes followed by culturing for up to 7 days. Cell viability was assessed with PrestoBlue Assay and live/dead stain. The potential effect of vancomycin on the expression of tendon specific genes and extracellular matrix (ECM) genes was quantified. Possible structural changes of the tendon are analyzed.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 32 - 32
1 May 2012
Aurich M Clayton J Bedi H Blackney M Smith P
Full Access

The treatment of osteochondral lesions in the ankle joint remains a challenging problem. While debridement and drilling or microfracture of the lesion reduce symptoms initially, long-term stability of the fibrous repair tissue is questionable. Osteochondral transplantation or mosaicplasty provide hyaline cartilage and repair the bony defect at the same time. However, an open arthrotomy with medial, lateral or anterior osteotomy is necessary to repair lesions of the talus. Lesions of the distal tibia cannot be reached. Matrix Associated Chondrocyte Implantation (MACI) has been shown to produce hyaline like cartilage repair tissue, and the implantation can be performed arthroscopically. Long term follow up studies (up to 10 years) in the knee demonstrate promising results.

The purpose of this study was to assess the efficacy of arthroscopic MACI for the treatment of osteochondral lesions in the ankle joint. We reviewed all patients (n=20) who had arthroscopic MACI treatment (n=22) between February 2006 and November 2008 clinically (Foot Function Index, AAOS Foot and Ankle Questionnaire, AOFAS-Hindfoot Score) and with MRI (3 Tesla Siemens MRI).

The clinical results and MRI findings up to three years after MACI were compared to pre-operative data. Possible correlations with the individual history and the nature, size or location of the lesion will be discussed. The surgical technique will be described. The results of the procedure are promising.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 1 | Pages 62 - 67
1 Jan 2012
Aurich M Hofmann GO Mückley T Mollenhauer J Rolauffs B

We attempted to characterise the biological quality and regenerative potential of chondrocytes in osteochondritis dissecans (OCD). Dissected fragments from ten patients with OCD of the knee (mean age 27.8 years (16 to 49)) were harvested at arthroscopy. A sample of cartilage from the intercondylar notch was taken from the same joint and from the notch of ten patients with a traumatic cartilage defect (mean age 31.6 years (19 to 52)). Chondrocytes were extracted and subsequently cultured. Collagen types 1, 2, and 10 mRNA were quantified by polymerase chain reaction. Compared with the notch chondrocytes, cells from the dissecate expressed similar levels of collagen types 1 and 2 mRNA. The level of collagen type 10 message was 50 times lower after cell culture, indicating a loss of hypertrophic cells or genes. The high viability, retained capacity to differentiate and metabolic activity of the extracted cells suggests preservation of the intrinsic repair capability of these dissecates. Molecular analysis indicated a phenotypic modulation of the expanded dissecate chondrocytes towards a normal phenotype. Our findings suggest that cartilage taken from the dissecate can be reasonably used as a cell source for chondrocyte implantation procedures.