Advertisement for orthosearch.org.uk
Results 1 - 18 of 18
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 30 - 30
23 Jun 2023
Shimmin A Plaskos C Pierrepont J Bare J Heckmann N
Full Access

Acetabular component positioning is commonly referenced with the pelvis in the supine position in direct anterior approach THA. Changes in pelvic tilt (PT) from the pre-operative supine to the post-operative standing positions have not been well investigated and may have relevance to optimal acetabular component targeting for reduced risk of impingement and instability. The aims of this study were therefore to determine the change in PT that occurs from pre-operative supine to post-operative standing, and whether any factors are associated with significant changes in tilt ≥13° in posterior direction.

13° in a posterior direction was chosen as that amount of posterior rotation creates an increase in functional anteversion of the acetabular component of 10°.

1097 THA patients with pre-operative supine CT and standing lateral radiographic imaging and 1 year post-operative standing lateral radiographs (interquartile range 12–13 months) were reviewed. Pre-operative supine PT was measured from CT as the angle between the anterior pelvic plane (APP) and the horizontal plane of the CT device. Standing PT was measured on standing lateral x-rays as the angle between the APP and the vertical line. Patients with ≥13° change from supine pre-op to standing post-op (corresponding to a 10° change in cup anteversion) were grouped and compared to those with a <13° change using unpaired student's t-tests.

Mean pre-operative supine PT (3.8±6.0°) was significantly different from mean post-operative standing PT (−3.5±7.1°, p<0.001), ie mean change of −7.3±4.6°.

10.4% (114/1097) of patients had posterior PT changes ≥13° supine pre-op to standing post-op.

A significant number of patients, ie 1 in 10, undergo a clinically significant change in PT and functional anteversion from supine pre-op to standing post-op. Surgeons should be aware of these changes when planning component placement in THA.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 83 - 83
1 Feb 2020
Shimmin A Pierrepont J Bare J McMahon S
Full Access

Introduction & aims

Apparently well-orientated total hip replacements (THR) can still fail due to functional component malalignment. Previously defined “safe zones” are not appropriate for all patients as they do not consider an individual's spinopelvic mobility. The Optimized Positioning System, OPSTM (Corin, UK), comprises preoperative planning based on a patient-specific dynamic analysis, and patient-specific instrumentation for delivery of the target component alignment. The aim of this study was to determine the early revision rate from the Australian Orthopaedic Association National Joint Replacement Registry (AOANJRR) for THRs implanted using OPSTM.

Method

Between January 4th 2016 and December 20st 2017, a consecutive series of 841 OPSTMcementless total hip replacements were implanted using a Trinity acetabular cup (Corin, UK) with either a TriFit TS stem (98%) or a non-collared MetaFix stem (2%). 502 (59%) procedures were performed through a posterior approach, and 355 (41%) using the direct superior approach. Mean age was 64 (range; 27 to 92) and 51% were female. At a mean follow-up of 15 months (range; 3 to 27), the complete list of 857 patients was sent to the AOANJRR for analysis.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 84 - 84
1 Feb 2020
Dennis D Pierrepont J Madurawe C Friedmann J Bare J McMahon S Shimmin A
Full Access

Introduction

Femoral component loosening is one of the most common failure modes in cementless total hip arthroplasty (THA). Patient age, weight, gender, osteopenia, stem design and Dorr-C bone have all been proposed as risk factors for poor fixation and subsequent stem subsidence and poor outcome. With the increased popularity of CT-based assistive technologies in THA, (Stryker MAKO and Corin OPSTM), we sought to develop a technique to predicted femoral stem fixation using pre-operative CT.

Methods

Fourteen patients requiring THA were randomly selected from a previous study investigating component alignment. Mean age was 64 (53 to 76), and 57% were female. All patients received pre-operative CT for 3D dynamic templating (OPSTM), and a TriFit stem and Trinity cup (Corin, UK) implanted through a posterior approach. Post-operatively, patients received an immediate CT and AP x-ray prior to leaving the hospital, and a 1-year follow-up x-ray. On both the immediate post-op x-ray and 1-year follow-up x-ray, the known cup diameter was used to scale the image. On both images, the distance between the most superior point of the greater trochanter and the shoulder of the stem was measured. The difference was recorded as stem subsidence. Subsidence greater than 4mm was deemed clinically relevant. The post-operative CT was used to determine the precise three-dimensional placement of the stem immediately after surgery by registering the known 3D implant geometry to the CT. For each patient, the achieved stem position from post-op CT was then virtually implanted back into the pre-operative OPSTM planning software. The software provides a colour map of the bone density at the stem/bone interface using the Hounsfield Units (HU) of each pixel of the CT [Fig. 1]. Blue represents low density bone transitioning through to green and then red (most dense).


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 86 - 86
1 Feb 2020
Dennis D Pierrepont J Bare J
Full Access

Introduction

Instability continues to be the number one reason for revision in primary total hip arthroplasty (THA). Commonly, impingement precedes dislocation, inducing a levering out the prosthetic head from the liner. Impingement can be prosthetic, bony or soft tissue, depending on component positioning and anatomy. The aim of this virtual study was to investigate whether bony or prosthetic impingement occurred first in well positioned THAs, with the hip placed in deep flexion and hyperextension.

Methods

Twenty-three patients requiring THA were planned for a TriFit/Trinity ceramic-on-poly cementless construct using the OPSTM dynamic planning software (Corin, UK). The cups were sized to best fit the anatomy, medialised to sit on the acetabular fossa and orientated at 45° inclination and 25° anteversion when standing. Femoral components and head lengths were then positioned to reproduce the native anteversion and match the contralateral leg length and offset. The planned constructs were flexed and internally rotated until anterior impingement occurred in deep flexion [Fig. 1]. The type (bony or prosthetic), and location, of impingement was then recorded. Similarly, the hips were extended and externally rotated until posterior impingement occurred, and the type and location of impingement recorded [Fig. 2]. Patients with minimal pre-operative osteophyte were selected as a best-case scenario for bony impingement.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 100 - 100
1 Apr 2019
Kreuzer S Pierrepont J Stambouzou C Walter L Marel E Solomon M Shimmin A McMahon S Bare J
Full Access

Introduction

Appropriate femoral stem anteversion is an important factor in maintaining stability and maximizing the performance of the bearing after total hip replacement (THR). The anteversion of the native femoral neck has been shown to have a significant effect on the final anteversion of the stem, particularly with a uncemented femoral component. The aim of this study was to quantify the variation in native femoral neck anteversion in a population of patients requiring total hip replacement.

Methods

Pre-operatively, 1215 patients received CT scans as part of their routine planning for THR. Within the 3D planning, each patient's native femoral neck anteversion, measured in relation to the posterior condyles of the knee, was determined.

Patients were separated into eight groups based upon gender and age. Males and females were divided by those under 55 years of age, those aged 55 to 64, 65 to 74 and those 75 or older.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 140 - 140
1 Apr 2019
Wakelin E Walter W Bare J Theodore W Twiggs J Miles B
Full Access

Introduction

Kinematics post-TKA are complex; component alignment, component geometry and the patient specific musculoskeletal environment contribute towards the kinematic and kinetic outcomes of TKA. Tibial rotation in particular is largely uncontrolled during TKA and affects both tibiofemoral and patellofemoral kinematics. Given the complex nature of post- TKA kinematics, this study sought to characterize the contribution of tibial tray rotation to kinematic outcome variability across three separate knee geometries in a simulated framework.

Method

Five 50th percentile knees were selected from a database of planned TKAs produced as part of a pre-operative dynamic planning system. Virtual surgery was performed using Stryker (Kalamazoo, MI) Triathlon CR and PS and MatOrtho (Leatherhead, UK) SAIPH knee medially stabilised (MS) components. All components were initially planned in mechanical alignment, with the femoral component neutral to the surgical TEA. Each knee was simulated through a deep knee bend, and the kinematics extracted. The tibial tray rotational alignment was then rotated internally and externally by 5° & 10°.

The computational model simulates a patient specific deep knee bend and has been validated against a cadaveric Oxford Knee Rig. Preoperative CT imaging was obtained, landmarking to identify all patient specific axes and ligament attachment sites was performed by pairs of trained biomedical engineers. Ethics for this study is covered by Bellberry Human Research Ethics Committee application number 2012-03-710.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 118 - 118
1 Apr 2019
Wakelin E Twiggs J Roe J Bare J Shimmin A Suzuki L Miles B
Full Access

Introduction & aims

Resurfacing of the patella is an important part of most TKA operations, usually using an onlay technique. One common practice is to medialise the patellar button and aim to recreate the patellar offset, but most systems do not well control alignment of the patella button. This study aimed to investigate for relationships between placement and outcomes and report on the accuracy of patella placement achieved with the aid of a patella Patient Specific Guide (PSG).

Method

A databse of TKR patients operated on by five surgeons from 1-Jan-2014 who had a pre-operative and post-operative CT scan and 6-month postoperative Knee Osteoarthritis and Outcome (KOOS) scores were assessed. Knees were excluded if the patella was unresurfaced or an inlay technique was used. All knee operations were performed with the Omni Apex implant range and used dome patella buttons. A sample of 40 TKRs had a patella PSG produced consisting of a replication of an inlay barrel shaped to fit flush to the patient's patella bone.

The centre of the quadriceps tendon on the superior pole of the patella bone and the patella tendon on the inferior were landmarked. 3D implant and bone models from the preoperative CT scans were registered to the post-operative CT scan. The flat plane of the implanted patella button was determined and the position of the button relative to the tendon attachments calculated. Coverage of the bone by the button and patellar offset reconstruction were also calculated. The sample of 40 TKRs for whom a patella PSG was produced had their variation in placement assessed relative to the wider population sample. All surgeries were conducted with Omni Apex implants using a domed patella.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 54 - 54
1 Apr 2018
Pierrepont J Ellis A Walter L Marel E Bare J Solomon M McMahon S Shimmin A
Full Access

Introduction

The pelvis moves in the sagittal plane during functional activity. These movements can have a detrimental effect on functional cup orientation. The authors previously reported that 17% of total hip replacement (THR) patients have excessive pelvic rotation preoperatively. This increased pelvic rotation could be a risk factor for instability and edge-loading in both flexion and/or extension. The aim of this study was to investigate how gender, age and lumbar spine stiffness affects the number of patients at risk of excessive sagittal pelvic rotation.

Method

Pre-operatively, 3428 patients had their pelvic tilt (PT) and lumbar lordotic angle (LLA) measured in three positions; supine, standing and flexed-seated, as part of routine planning for THR. The pelvic rotation from supine-to-standing and from supine-to-seated was determined from the difference in pelvic tilt measurements between positions. Lumbar flexion was determined as the difference between LLA standing and LLA when flexed-seated. Patients were stratified into groups based upon age, gender and lumbar flexion. The percentage of patients in each group with excessive pelvic rotation, defined by rotation ≥13° in a detrimental direction, was determined.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 56 - 56
1 Apr 2018
Pierrepont J Hardwick-Morris M McMahon S Bare J Shimmin A
Full Access

Introduction

The Intellijoint HIP system is a mini-optical navigation system designed to intraoperatively assist with cup orientation, leg length and offset in total hip replacement (THR). As with any imageless navigation system, acquiring the pelvic reference frame intraoperatively requires assumptions. The system does however have the ability to define the native acetabular orientation intra-operatively by registering 3-points along the bony rim. In conjunction with a pre-operative CT scan, the authors hypothesised that this native acetabular plane could be used as an intraoperative reference to achieve a planned patient-specific cup orientation.

Method

Thirty-eight THR patients received preoperative OPSTM dynamic planning (Optimized Ortho, Sydney). On the pre-operative 3D model of each patient's acetabulum, a 3-point plane was defined by selecting recognisable features on the bony rim. The difference in inclination and anteversion angles between this native 3-point reference plane and the desired optimal orientation was pre-operatively calculated, and reported to the surgeon as “adjustment angles”. Intraoperatively, the surgeon tried to register the same 3-points on the bony rim. Knowing the intraoperative native acetabular orientation, the surgeon applied the pre-calculated adjustment angles to achieve the planned patient specific cup orientation. All patients received a post-operative CT scan at one-week and the deviation between planned and achieved cup orientation was measured. Additionally, the cup orientation that would have been achieved if the standard Intellijoint pelvic acquisition was performed was retrospectively determined.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 55 - 55
1 Apr 2018
Pierrepont J Miller A Bruce W Bare J McMahon S Shimmin A
Full Access

Introduction

Appropriate prosthetic alignment is an important factor in maintaining stability and maximising the performance of the bearing after total hip replacement (THR). With a cementless component, the anteversion of the native femur has been shown to influence the anteversion of the prosthetic stem. However, the extent to which anteversion of a cementless stem can be adjusted from the native anteversion has seldom been reported. The aim of this study was to investigate the difference between native and stem anteversion with two different cementless stem designs.

Method

116 patients had 3-dimensional templating as part of their routine planning for THR (Optimized Ortho, Sydney). 96 patients from 3 surgeons (AS, JB, SM) received a blade stem (TriFit TS, Corin, UK) through a posterior approach. 18 patients received a fully HA-coated stem (MetaFix, Corin, UK) through a posterior approach by a single surgeon (WB). The anteversion of the native femoral neck was measured from a 3D reconstruction of the proximal femur. All patients received a post-operative CT scan which was superimposed onto the pre-op CT scan. The difference between native and achieved stem anteversion was then measured. As surgeons had differing philosophies around target stem anteversion, the differences amongst surgeons were also investigated.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 53 - 53
1 Apr 2018
Pierrepont J Stambouzou C Bruce W Bare J Boyle R McMahon S Shimmin A
Full Access

Introduction & aims

Correct prosthetic alignment is important to the longevity and function of a total hip replacement (THR). With the growth of 3-dimensional imaging for planning and assessment of THR, the importance of restoring, not just leg length and medial offset, but anterior offset has been raised. The change in anterior offset will be influenced by femoral anteversion, but there are also other factors that will affect the overall change after THR. Consequently, the aim of this study was to investigate the relationship between anterior offset and stem anteversion to determine the extent to which changing anteversion influences anterior offset.

Method

Sixty patients received a preoperative CT scan as part of their routine planning for THR (Optimized Ortho, Sydney). All patients received a Trinity cementless shell and a cemented TaperFit stem (Corin, UK) by the senior author through an anterolateral approach. Stem anteversion was positioned intraoperatively to align with cup anteversion via a modified Ranawat test. Postoperatively, patients received a CT scan which was superimposed onto the pre-op CT scan. The difference between native and achieved stem anteversion was measured, along with the 3-dimensional change in head centre from pre-to post-op. Finally, the relationship between change in stem anteversion and change in anterior offset was investigated.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 52 - 52
1 Apr 2018
Pierrepont J Miller A Bare J McMahon S Shimmin A
Full Access

Introduction

The posterior condylar axis of the knee is the most common reference for femoral anteversion. However, the posterior condyles, nor the transepicondylar axis, provide a functional description of femoral anteversion, and their appropriateness as the ideal reference has been questioned. In a natural standing positon, the femur can be internally or externally rotated, altering the functional anteversion of the native femoral neck or prosthetic stem. Uemura et al. found that the femur internally rotates by 0.4° as femoral anteversion increases every 1°. The aim of this study was to assess the relationship between femoral anteversion and the axial rotation of the femur before and after total hip replacement (THR).

Method

Fifty-nine patients had a pre-operative CT scan as part of their routine planning for THR. The patients were asked to lie in a comfortable position in the CT scanner. The internal/external rotation of the femur, described as the angle between the posterior condyles and the CT coronal plane, was measured. The native femoral neck anteversion, relative to the posterior condyles, was also determined. Identical measurements were performed at one-week post-op using the same CT methodology. The relationship between femoral IR/ER and femoral anteversion was studied pre- and post-op. Additionally, the effect of changing anteversion on the axial rotation of the femur was investigated.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_1 | Pages 75 - 75
1 Jan 2018
Shimmin A Bare J McMahaon S Marel E Walter L Solomon M
Full Access

The pelvis moves in the sagittal plane during functional activity. This can be detrimental to functional cup orientation. Increased pelvic mobility could be a risk factor for instability and edge-loading, in both flexion and/or extension. The aim of this study was to investigate how gender, age and lumbar spine stiffness, affects the number of patients at risk of excessive sagittal pelvic mobility.

Pre-operatively, 3428 patients had their pelvic tilt and lumbar lordotic angle (LLA) measured in three positions; supine, standing and flexed-seated. The pelvic rotation from supine-to-standing and from supine-to-seated was determined from the difference in pelvic tilt measurements between positions. Lumbar flexion was determined as the difference between LLA standing and LLA when flexed-seated. Patients were stratified into groups based upon age, gender, and lumbar flexion. The percentage of patients in each group with “at risk” pelvic rotation, defined by rotation ≥13° in a detrimental direction, was determined.

There was an increased incidence of “at risk” pelvic mobility with increasing age, and decreasing lumbar flexion. This was more pronounced in females. Notably, 31% of elderly females had “at risk” pelvic mobility. Furthermore, 38% of patients with lumbar flexion <20° had “at risk” pelvic mobility.

“At risk” pelvic mobility was more common in older patients and in patients with limited lumbar flexion. Additional stability, such as a dual mobility articulation, might be advisable in patient cohort. However, the majority of patients exhibiting “at risk” pelvic mobility were not older than 75, and did not have lumbar flexion <20°. This supports analysis of pelvic mobility on all patients undergoing THR.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_20 | Pages 59 - 59
1 Dec 2017
Theodore W Little J Liu D Bare J Dickison D Taylor M Miles B
Full Access

Despite of the high success of TKA, 20% of recipients remain dissatisfied with their surgery. There is an increasing discordance in the literature on what is an optimal goal for component alignment. Furthermore, the unique patient specific anatomical characteristics will also play a role. The dynamic characteristic of a TKR is a product of the complex interaction between a patient's individual anatomical characteristics and the specific alignment of the components in that patient knee joint. These interactions can be better understood with computational models. Our objective was to characterise ligament characteristics by measuring knee joint laxity with functional radiograph and with the aid of a computational model and an optimisation study to estimate the subject specific free length of the ligaments.

Pre-operative CT and functional radiographs, varus and valgus stressed X-rays assessing the collateral ligaments, were captured for 10 patients. CT scan was segmented and 3D–2D pose estimation was performed against the radiographs. Patient specific tibio-femoral joint computational model was created. The model was virtually positioned to the functional radiograph positions to simulate the boundary conditions when the knee is stressed. The model was simulated to achieve static equilibrium. Optimisation was done on ligament free length and a scaling coefficient, flexion factor, to consider the ligaments wrapping behaviour.

Our findings show the generic values for reference strain differ significantly from reference strains calculated from the optimised ligament parameters, up to 35% as percentage strain. There was also a wide variation in the reference strain values between subjects and ligaments, with a range of 37% strain between subjects. Additionally, the knee laxity recorded clinically shows a large variation between patients and it appears to be divorced from coronal alignment measured in CT. This suggests the ligaments characteristics vary widely between subjects and non-functional imaging is insufficient to determine its characteristics. These large variations necessitate a subject-specific approach when creating knee computational models and functional radiographs may be a viable method to characterise patient specific ligaments.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 16 - 16
1 Mar 2017
Twiggs J Miles B McMahon S Bare J Solomon M Hogan J Roberts B Theodore W
Full Access

Introduction

Both navigation and instrumented bone referencing use unreliable intraoperative landmark identification or fixed referencing rules which don't reflect patient specific variability. PSI, however, lacks the flexibility to adapt to soft tissue factors not known during preoperative planning, in addition to suffering error from guide fit. A novel method of recreating surgical cut planes that combines preoperative image based identification of landmarks and planning with intraoperative adjustability is under development. This method uses an intraoperative 3D scan of the bone in conjunction with a preoperative CT scan to achieve the desired cuts and so avoids issues of intraoperative identification of landmarks.

Method

During TKA surgery, a reference device is placed on the exposed femur. The device is used to position a target block which is pinned to the bone (see Figure 1). The condyles and target block are then scanned, the process taking a second to complete. This 3D scan is filtered to remove extraneous bodies and noise leaving only the bony geometry and target block (see Figure 2). The scan is then reconciled to the known bone geometry taken from preoperative CT scans. A cutting block is then fixed to the target block with a reference array visible to the camera attached. Pre-planned cut planes on a computer model of the bone are compared to the position and configuration of the distal cutting guide. Software guides the surgeon in real-time on the necessary configuration changes required to align the cutting block. The cut is performed on the distal femur, the cutting guide removed from the target-block, and a second scan performed. The software repeats the filtering and alignment processes and provides the surgeon with data on how closely the performed cut matches the alignment planned.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 49 - 49
1 Mar 2017
Twiggs J Theodore W Liu D Dickison D Bare J Miles B
Full Access

Introduction

Surgical planning for Patient Specific Instrumentation (PSI) in total knee arthroplasty (TKA) is based on static non-functional imaging (CT or MRI). Component alignment is determined prior to any assessment of clinical soft tissue laxity. This leads to surgical planning where assumptions of correctability of preoperative deformity are false and a need for intraoperative variation or abandonment of the PSI blocks occurs. The aim of this study is to determine whether functional radiology complements pre-surgical planning by identifying non-predictable patient variation in laxity.

Method

Pre-operative CT's, standing radiographs and functional radiographs assessing coronal laxity at 20° flexion were collected for 20 patients. Varus/valgus laxity was assessed using the TELOS stress device (TELOS GmbH, Marburg, Germany, see Figure 1). The varus/valgus load was incrementally increased to either a maximum load of 150N or until the patient could not tolerate the discomfort. Radiographs were taken whilst the knee was held in the stressed position.

CT scans were segmented and anatomical points landmarked. 2D–3D pose estimations were performed using the femur and tibia against the radiographs to determine knee alignment with each functional radiograph and so characterise the varus/valgus laxity


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 64 - 64
1 May 2012
McMahon S Hawdon G Bare J Sim Y Bertollo N Walsh W
Full Access

Thermal damage to bone related to the exothermic polymerisation of bone cement (PMMA) remains a concern. A series of studies were conducted to examine PMMA bone interface during cemented arthroplasty.

In vitro and in vivo temperature distributions were performed in the laboratory and human and animal surgery. In vivo (10 patients) measurements of cement temperature during cementing of BHR femoral prosthesis using thermocouples. Intra-operative measurement of cement temperature in BHR in the presence of femoral head cysts was examined in patients. The BHR femoral heads were sectioned to assess cement mantle as well as position of thermocouples. An additional study was performed in sheep with PMMA implanted into cancellous defects. Thermocouples were used to monitor temperature in the cement as well as adjacent bone. Histology and CT was used to assess any thermal damage.

The exothermic reaction of PMMA during polymerization does indeed result in an increase in temperature at the interface with bone. The in vivo study recorded a maximum temperature of 49.12C for approximately three minutes in the cancellous bone underneath the BHR prosthesis. This exposure is probably not sufficient to cause significant injury to the femoral head. The maximum temperature of the cement on the surface of the bone was 54.12C, whereas the maximum recorded in the cement in the mixing bowl was 110.2C.

In the presence of artificial cysts within the bone, however, temperatures generated within the larger cysts, and even at the bone-cement interface of these cysts, reached levels greater than those previously shown to be harmful to bone. This occurred in one case even in the 1 cc cyst.

Routine histology revealed a fibrous layer at the cement bone interface in the sheep study. Fluorescent microscopy demonstrated bone label uptake adjacent to the defect site. Histology did not reveal thermal necrosis in the defects in terms of bony necrosis. CT data was used to measure the amount of PMMA placed into each defect. This analysis revealed a range of volumes that did not seem to influence the histology.

The heat of cement polymerisation in resurfacing as performed in our study is not sufficient to cause necrosis. This may reflect the ability of the body to rapidly conduct heat away by acting as a heat sink. The temperature-conducting properties of the metal prosthesis are also likely to be important.


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_III | Pages 255 - 255
1 Mar 2004
Tran P Bare J Hart J Forbes A Williamson O
Full Access

Aims: To compare digital imaging sent via email versus conventional radiographs in diagnosing and managing ankle fractures. Methods: Radiographs on a viewing box were photographed using a digital camera with a resolution of 1024 x 768 pixels at 24-bit colour depth. The resultant images were compressed using the JPEG (Joint Photographic Experts Group) format at a medium compression ratio and transmitted as email attachments. The mean size of the resultant files was 165 kByte (range146–209). The study radiographs, including 66 radiographs (33 A-P and 33 Lateral), were viewed by seven orthopaedic surgeons and assessed according to the classification of ankle fracture and the surgeons’ choice of management for that fracture. Over a four month interval, each surgeon was independently shown each set of patients’ radiographs 4 times: twice via JPEG format on a computer screen and twice via a conventional light box. Results: Results were analysed using weight kappa scores, interclass correlation and variance, for interobserver and intraobserver error for both diagnostic classification and for management decision. These results were then used to determine if there was a difference between interpretation of radiographs presented in the two different formats. There were no significant difference in diagnostic accuracy or management decisions between conventional radiographs and telemedicine reading. Conclusions: JPEG compression is suitable for transmission of X-ray