The ideal treatment method regarding various defect sizes after local aggressive tumor resection is unknown. We investigated the biomechanical properties of metaphyseal defect filling regarding different defect sizes and fixation methods. Ninety-one sheep tibias were divided into five groups as 21 tibias per four study groups and 7 tibias in the control group. Study groups were further divided into three subgroups according to 25%, 50% and 75% metaphyseal defect size. Control group tibias were left intact. In study group 1, a metaphyseal defect was created and no further process was applied. Metaphyseal defects were filled with cement without fixation in group 2. Cement filling and fixation with 2 screws were performed in group 3. In addition to cement filling, plate-screw fixation was performed in group 4. Axial loading test was applied to all tibias and the results were compared between study subgroups and control group. Plate-screw fixation was found to have the best biomechanical properties in all defect sizes. Load to failure for screw fixation was found to be significantly decreased between 25% and 50% defect size (P<0.05). However, load to failure for isolated cement filling was not affected from defect size (p>0.05). In conclusion, size of the defect predicts the fixation method in addition to filling with cement. Filling with cement in metaphyseal defects was found to be biomechanically insufficient. In addition to filling with cement, additional screw fixation in less than 25% defects and plate-screw fixation in more than 25% defects may decrease tibial plateau fracture or metaphyseal fracture risk after local aggressive tumor resection.
The purpose of this study was to evaluate and
compare the effect of short segment pedicle screw instrumentation and
an intermediate screw (SSPI+IS) on the radiological outcome of type
A thoracolumbar fractures, as judged by the load-sharing classification,
percentage canal area reduction and remodelling. We retrospectively evaluated 39 patients who had undergone hyperlordotic
SSPI+IS for an AO-Magerl Type-A thoracolumbar fracture. Their mean
age was 35.1 (16 to 60) and the mean follow-up was 22.9 months (12
to 36). There were 26 men and 13 women in the study group. In total,
18 patients had a load-sharing classification score of seven and
21 a score of six. All radiographs and CT scans were evaluated for
sagittal index, anterior body height compression (%ABC), spinal
canal area and encroachment. There were no significant differences
between the low and high score groups with respect to age, duration
of follow-up, pre-operative sagittal index or pre-operative anterior
body height compression (p = 0.217, 0.104, 0.104, and 0.109 respectively).
The mean pre-operative sagittal index was 19.6° (12° to 28°) which
was corrected to -1.8° (-5° to 3°) post-operatively and 2.4° (0°
to 8°) at final follow-up (p = 0.835 for sagittal deformity). No
patient needed revision for loss of correction or failure of instrumentation. Hyperlordotic reduction and short segment pedicle screw instrumentation
and an intermediate screw is a safe and effective method of treating
burst fractures of the thoracolumbar spine. It gives excellent radiological
results with a very low rate of failure regardless of whether the
fractures have a high or low load-sharing classification score. Cite this article