Traditional techniques for the insertion of femoral stems in arthroplasty of the hip in osteopetrosis carry a considerable risk of penetration of the femoral cortex and intra-operative fractures, due to obliteration of the intramedullary cavity and greatly increased stiffness and brittleness of the bone. In order to reduce the risk of such complications we manufactured a customised stem and a computer-based guiding device for the preparation of a cavity within the proximal femur. This system was used successfully in three hips in two patients. We describe the system and the operative technique.
Computer-assisted techniques are developed to optimise the positioning of acetabular cups in total hip replacement. However, ordinary guiding devices are still most commonly used. The aim of this study was to evaluate the accuracy when using a simple mechanical guiding device. 30 patients were operated by an experienced hip surgeon. A lateral position and a lateral approach were used. An un cemented press fit cup (Trilogy AB) was inserted using the guiding device for this type of pros-thesis, aiming 45 degrees abduction and 20 degrees ante-version. Radiological investigations were performed one week and three months postoperatively. Frontal views of the pelvis and of the operated hip were obtained. After scanning the contour of the opening of the acetabular prosthesis was identified and digitised using an edge detecting technique. The axes of the ellipsis of the acetabular opening served for calculation of the version of the cup. A lateral view clarified whether the cup was ante- or retroverted. The abduction related to the teardrop-line was measured on the scanned pelvic radiograph. One week postoperatively mean abduction was 50 degrees (37–62), SD 5 degrees. Mean anteversion measured on the pelvic view was 9 degrees (2–23), SD 5 degrees, compared to 11 degrees (4–24), SD 5 degrees, on the frontal view of the hip joint 50 per cent of the cups showed a deviation of more than 10 degrees from the aimed anteversion.. At average the anteversion was 2 degrees lower when measured on the pelvic view compared to that measured on the AP-view of the hip. There were no significant differences between the measurements at one week and three months. The anteversion of uncemented press fit acetabular components tends to be lower than intended when using a simple guiding device. The risk of an unacceptable abduction seems negligible. The inaccuracy in acetabular positioning may be due to inadequate positioning of the pelvis or inaccurate insertion technique.
In the past it has been widely accepted that bone remodelling of the proximal femur after cementless total hip replacement is a result of the altered mechanical environment. Usually, there is are distribution of the stresses in the bone, and subsequently bone mass, from the metaphysis to the proximal part of the diaphysis. The design rationale for some cementless stems is to transmit load to the proximal femur and thus to preserve the bone mineral content in this area. The aim of the present study was to investigate the relationship between postoperative strain shielding of the proximal femur and the bone remodelling after insertion of two different cementless femoral stems.
Clinical study: In a prospective, randomized study including 80 patients, the same types of stems were inserted and the bone mineral density (BMD) was measured during the first two years postoperatively using DEXA. Then, the pattern of remodelling was compared with the gradient of strain shielding in each of the Gruen zones in the frontal plane. In Gruen zone 7 the relative cortical strain shielding was45% in the femurs with a custom stem and 87% in the femurs with an anatomic stem. In zone 6 the corresponding figures were 2% and 38%, in zone 5 0% and15% and in zone 3 0% and 20%. The DEXA measurements showed a decrease in BMD in zone 7 of 22% and 23% for the two stems, respectively. In the other zones the bone loss was smaller and there was no difference between the stems. In the proximal zones there was a highly significant difference in strain shielding between femurs receiving a customor an anatomic stem. However, there was no difference in the pattern of bone remodelling. The bone remodelling around these two stems does not seem to mirror the gradient of strain shielding.
A customised, uncemented femoral stem was introduced clinically in 1995 after several years of development and pre-clinical testing. All the patients operated in our hospital have entered a prospective clinical study. The aim of this study is to present the short-term clinical data. Furthermore, the measurement of implant migration and the periprosthetic bone remodelling at two years is also reported.
An argument against the use of canal-filling, customised femoral stems has been that such implants have a large cross-sectional area and therefore are stiffer than standard, uncemented implants, thus inducing more stress shielding and bone loss in the proximal femur. The purpose of this study was to evaluate the association between the volume of the femoral stem and the change in periprosthetic bone mineral density (BMD) measured with DEXA.
New prosthesis designs should be compared to a standard implant in randomized studies evaluated by radiostereometric analysis (RSA). The Unique customized prosthesis (UCP) is a newly developed concept for fitting uncemented prosthesis to the exact internal shape of the proximal femur [
The aim of this paper is to present our 7 years experience with the use of a custom femoral stem with proximal HA-coating (Unique SCP). This prosthesis was developed to optimise the þxation and the strain distribution to the proximal femur and also the biomechanics of the hip in uncemented femoral stems.
CT-based, customised femoral stem enables optimal reconstruction of hip mechanics and leg length. However, traditional planning and execution of cup insertion may jeopardise these biomechanical parameters. The aim of this study was to examine the agreement of the preoperative planning of cup position and the final position of the cup. Thirty total hip replacements with an uncemented acetabular cup (Duraloc, DePuy) or a cemented cup (Elite-Plus, DePuy) were included. A customised femoral stem was used in all hips. On the preoperative X-rays the planned position and orientation of the cup had been marked prior to the surgery. The pre- and postoperative X-ray images were then digitised and scaled. The planned and final positions of the cup centre in the frontal plane was then measured relative to a horizontal line defined by the tear-drops and to a vertical line through the centre of the tear-drop on the operated side. In addition the concurrence between the planned and final cup size was examined. In the horizontal direction the cups were positioned 1.4 (7.6) mm (median, ±2SD) more medial than planned on the preoperative X-rays. In the vertical direction the corresponding figures were 1.2 (6.6) mm (median, ±2SD) and the cups were usually placed more cranially than was planned. The maximum discrepancy between the planned and final position was 10,6 mm in the horizontal direction (medial) and 7.1 mm in the vertical direction (cranial). In 63% of the hips there was agreement between the size of the cup planned preoperatively and the cup that was finally inserted. In 25% of the hips the final cup was larger and in 12% the final cup was smaller. In most cases the acetabular cups were inserted within a few millimetres of the planned position. The combination of a standard uncemented or cemented cup with a custom femoral stem enables the surgeon to restore hip mechanics and leg length.
We have compared the changes in the pattern of the principal strains in the proximal femur after insertion of eight uncemented anatomical stems and eight customised stems in human cadaver femora. During testing we aimed to reproduce the physiological loads on the proximal femur and to simulate single-leg stance and stair-climbing. The strains in the intact femora were measured and there were no significant differences in principal tensile and compressive strains in the left and right femora of each pair. The two types of femoral stem were then inserted randomly into the left or right femora and the cortical strains were again measured. Both induced significant stress shielding in the proximal part of the metaphysis, but the deviation from the physiological strains was most pronounced after insertion of the anatomical stems. The principal compressive strain at the calcar was reduced by 90% for the anatomical stems and 67% for the customised stems. Medially, at the level of the lesser trochanter, the corresponding figures were 59% and 21%. The anatomical stems induced more stress concentration on the anterior aspect of the femur than did the customised stems. They also increased the hoop strains in the proximomedial femur. Our study shows a consistently more physiological pattern of strain in the proximal femur after insertion of customised stems compared with standard, anatomical stems.
CT and advanced computer-aided design techniques offer the means for designing customised femoral stems. Our aim was to determine the Hounsfield (HU) value of the bone at the corticocancellous interface, as part of the criteria for the design algorithm. We obtained transverse CT images from eight human cadaver femora. The proximal femoral canal was rasped until contact with dense cortical bone was achieved. The femora were cut into several sections corresponding to the slice positions of the CT images. After obtaining a computerised image of the anatomical sections using a scanner, the inner cortical contour was outlined and transferred to the corresponding CT image. The pixels beneath this contour represent the CT density of the bone remaining after surgical rasping. Contours were generated automatically at nine HU levels from 300 to 1100 and the mean distance between the transferred contour and each of the HU-generated contours was computed. The contour generated along the 600-HU pixels was closest to the inner cortical contour of the rasped femur and therefore 600 HU seem to be the CT density of the corticocancellous interface in the proximal part of cadaver femora. Generally, femoral bone with a CT density beyond 600 HU is not removable by conventional reamers. Thus, we recommend the 600 HU threshold as one of several criteria for the design of custom femoral implants from CT data.
We studied the effect of transcutaneous electrical nerve stimulation (TENS) on stump healing and postoperative and late phantom pain after major amputations of the lower limb. A total of 51 patients were randomised to one of three postoperative treatment regimens: sham TENS and chlorpromazine medication, sham TENS only, and active low frequency TENS. There were fewer re-amputations and more rapid stump healing among below-knee amputees who had received active TENS. Sham TENS had a considerable placebo effect on pain. There were, however, no significant differences in the analgesic requirements or reported prevalence of phantom pain between the groups during the first four weeks. The prevalence of phantom pain after active TENS was significantly lower after four months but not after more than one year.