Calcium phosphates-based coatings have been widely studied to favour a firm bonding between orthopaedic implants and the host bone. To this aim, thin films (thickness below 1 μm) having high adhesion to the substrate and a nanostructured surface texture are desired, capable of boosting platelet, proteins and cells adhesion. In addition, a tunable composition is required to resemble as closely as possible the composition of mineralized tissues and/or to intentionally substitute ions having possible therapeutic functions. The authors demonstrated nanostructured films having high surface roughness and a composition perfectly resembling the deposition target one can be achieved by Ionized Jet Deposition (IJD). Highly adhesive nanostructured coatings were obtained by depositing bone-apatite like thin films by ablation of deproteinized bovine bone, capable of promoting host cells attachment, proliferation and differentiation. Here, biomimetic films are deposited by IJD, using biogenic and synthetic apatite targets. Since IJD deposition can be carried out without heating the substrate, application on heat sensitive polymeric substrate, Biogenic apatite coatings are obtained by deposition of deproteinized bone (bovine, ovine, equine, porcine) and compared to ones of stoichiometry hydroxyapatite (HAp). Coatings composition (FT-IR-ATR, FT-IR microscopy, XRD, EDS) and morphology (SEM, AFM) are tested for deposition onto metallic and 3D-printed polymeric substrates (polyurethane (PU)). Different post-treatment annealing procedures for metallic substrates are compared (350–425°C), to optimize crystallinity. Then, uniformity of substrate coverage and possible damage caused to the polymeric substrate are studied by SEM, DSC and FT-IR microscopy. Biogenic coatings are composed by carbonated HAp (XRD, FT-IR). Trace ions Na+ and Mg2+ are transferred from deposition target to coating. All coatings are nanostructured, composed by nano-sized globular aggregates, of which morphology and dimensions depend on the target characteristics. As-deposited coatings are amorphous, but crystallinity can be tuned by post-treatment annealing. A bone-like crystallinity can be achieved for heating at ≥400°C, also depending on duration. When deposited on 3D-printed PU scaffolds, coatings, owing to sub-micrometric thickness, coat them entirely, without altering their fibre shape and porosity. Obtained biomimetic bone apatite coatings can be deposited onto a variety of metallic and polymeric biomedical devices, thus finding several perspective applications in biomedical field.
No therapeutic strategy, administered in the early stage of osteoarthritis (OA), is fully able to block the degenerative and inflammatory progress of the pathology, whose only solution remains surgery. Aiming to identify minimally invasive therapies able to act on both degenerative and inflammatory processes, infiltrative treatments based on mesenchymal stem cells represent a promising solution due to their proliferative, immunomodulatory, anti-inflammatory, and paracrine ability. Accordingly, the aim of the present study was to investigate the performance of different cell therapies (stem cells from adipose tissue, ADSCs, stromal vascular fraction, SVF, and culture expanded, AECs vs negative control NaCl) in the treatment of OA. An A statistically significant multi-variable linear regression model was found between τ and Th, FI, C2 (R2 0.7, p-value 8.39E-5). The relation was particularly strong between τ and C2 (p-value 7E-4), with a positive coefficient of 0.92. This is in agreement with literature, where a higher cartilage viscosity was related to a major content of collagen. By dividing the samples in two groups depending on cartilage damage, the more degenerated group (DS > 5) showed statistically significant lower C2 (p-value 0.0124) and τ (p-value 0.05), confirming that collagen content and viscosity decrease with OA grade increasing. Averaging the entire group of samples, the OA degeneration progressed between 3 and 6 months after, and despite, the treatment. But focusing on specific treatments, SVF and AECs differed from the general trend, inducing a higher amount of collagen at 6 months respect to 3 months. Moreover, articular cartilage treated by AECs and, overall, SVF showed a higher content of collagen and a major viscosity respect to the other treatments. We conclude that an injection of mesenchymal stem cells from stromal vascular fraction in early OA articulations could hinder the degenerative process, preserving or even restoring collagen content and viscosity of the articular cartilage.
Implant-related infections pose a severe economical and societal burden, hence solutions capable of exerting suitable efficacy while not causing toxicity and/or development of resistant bacterial strains are needed. Thus, inorganic antibacterial coatings, and in particular silver coatings, have been extensively studied and used in the clinical practice. However, some drawbacks such as scarce adhesion to the substrate, delamination, or scarce control over silver release have been evidenced. Here, antibacterial nanostructured silver thin films have been developed by a novel plasma-assisted technique. The technique allows deposition on several substrates, including heat sensitive materials and objects of complex shape. Thanks to nanostructured surface, a tuned release can be achieved, preventing citoxicity. Composition (grazing incidence XRD, XPS) and morphology (SEM, AFM, ASTM) of the obtained coatings were characterized, then, their efficacy was validated
Fabrication of biogenic coatings with suitable mechanical properties is a key goal in orthopedics, to overcome the limitations of currently available coatings and improve the clinical results of coated implants compared to uncoated ones. In this paper, biological-like apatite coatings were deposited from a natural bone-apatite source by a pulsed electron deposition technique (PED). Bone apatite-like (BAL) films were deposited directly from bone targets, obtained by standard deproteinization of bovine tibial cortical shafts and compared to films deposited by sintered stoichiometric-hydroxyapatite targets (HA). Deposition was performed at room temperature by PED in the Ionized Jet Deposition (IJD) version. Half of the samples was annealed at 400°C for 1h (BAL_400 and HA_400). As-deposited and annealed coatings were characterized in terms of composition and crystallinity (XRD, FT-IR), microstructure and morphology (SEM-EDS, AFM) and mechanical properties (nanoindentation and micro-scratch). For the biological tests, human dental pulp stem cells (hDPSCs) were isolated from dental pulp from patients undergoing a routine tooth extraction, plated on the samples (2500 cells/cm2) and cultured for 3 weeks, when the expression of typical osteogenic markers Runx-2, osteopontin, Osx and Osteocalcin in hDPSCs was evaluated. Results showed that deposition by PED allows for a close transfer of the targets” composition. As-deposited coatings exhibited low cristallinity, that was significantly increased by post-deposition annealing, up to resembling that of biogenic apatite target. As a result of annealing, mechanical properties increased up to values comparable to those of commercial plasma-sprayed HA-coatings.
In conclusion, bone-like apatite coatings were deposited by PED, which closely resembled composition and structure of natural-apatite. Upon annealing at 400°C, the coatings exhibited satisfactory mechanical properties and were capable of providing a suitable microenvironment for hDPSCs adherence and proliferation and for them to reach osteogenic commitment. These results suggest that bone apatite-like thin films obtained by biogenic source may represent an innovative platform to boost bone regeneration in the orthopedic, maxillofacial and odontoiatric field.