Osteoarthritis of the first metatarsophalangeal (MTP1) joint is a common disorder in elderly, resulting in pain and disability. Arthrodesis of this joint shows satisfactory results, with relieve of pain in approximately 85% of the patients. However, the compensation mechanism for loss of motion in the MTP1 joint after MTP1 arthrodesis is unknown. A reduced compensation mechanism of the foot may explain the disappointing result of MTP1 arthrodesis in the remaining 15% of the patients. This study was conducted to elucidate this compensation mechanism. We hypothesize that the ankle and forefoot are responsible for compensation after MTP1 arthrodesis. Gait was evaluated in eight patients with arthrodesis of the MTP1 joint (10 feet) and twelve healthy controls (21 feet) by using a sixteen-camera Vicon-system. The four-segmental, validated Oxford-Foot-Model was used to investigate differences in range of motion of the hindfoot-tibia, forefoot-hindfoot and hallux-forefoot segment during stance. For statistical analysis, the unpaired t-test with Bonferroni correction (p<0.0125) was performed. No differences in spatiotemporal parameters were observed between both groups. In the frontal plane, MTP1 arthrodesis decreased the range of motion in midstance, while an increased range of motion was observed in terminal stance for the hindfoot relative to the tibia in the transversal plane. Subsequently range of motion in the forefoot in preswing was increased. This resulted in less eversion in the hindfoot during midstance, increased internal rotation of the hindfoot during terminal stance and more supination in the forefoot during preswing in the MTP1 arthrodesis group. Motion of the hallux was restricted in the loading response (i.e. plantar flexion) and terminal stance (i.e. dorsiflexion). As hypothesized, both the ankle and the forefoot are responsible for compensation after MTP1 arthrodesis, because arthrodesis causes less eversion and increased internal rotation of the hindfoot and increased supination of the forefoot. As expected, both dorsiflexion and plantar flexion of the hallux was restricted due to arthrodesis. These findings suggest a gait pattern in which the lateral arch of the foot is more loaded and the stiff hallux is avoided during the stance phase of gait. Our results indicate that proper motion of the forefoot and ankle joint is important when considering arthrodesis of the MTP1 joint. Therefore, we emphasize careful assessment the range of motion in the forefoot and ankle joint in the pre-operative situation, since patients with a decreased range of motion in the forefoot and ankle joint have a less functioning compensation mechanism. We currently perform a study to evaluate the strength of the positive correlation between the pre-operative range of motion in the forefoot and ankle joint and the clinical outcome.