We investigated the effect of adjuvant and neoadjuvant chemotherapy regimens on the tibial regenerate after removal of the external fixator in a rabbit model of distraction osteogenesis using New Zealand white rabbits. Forty rabbits were randomly distributed into two groups. In the neoadjuvant group, half of the rabbits received 1mg/kg cisplatinum & 2mg/kg adriamycin at eight weeks of age followed by 1mg/kg cisplatinum & 4mg/kg adriamycin at ten weeks of age. The remaining ten received an identical volume of normal saline using the same regimen. The adjuvant group differed only in the timing of the chemotherapy infusion. Half received the initial infusion ten days prior to the osteotomy, with the second infusion four days following the osteotomy. Again, the remaining ten rabbits received an identical volume of normal saline using the same regimen. This produced an identical interval between infusions and identical age at osteotomy in both groups. All rabbits underwent a tibial osteotomy at 12 weeks of age. Distraction started 24hours after osteotomy at a rate of 0.75mm a day for 10 days, followed by 18 days without correction to allow for consolidation of the regenerate. At week 16 there was no difference in Bone Mineral Density (BMD), Bone Mineral Content (BMC) or volumetric Bone Mineral Density (vBMD) in the adjuvant group. Neoadjuvant chemotherapy appears to have a significant detrimental effect on BMD, vBMD and BMC. Despite this there were no significant alterations in the mechanical properties of the regenerate. Histologically there was a trend for increased cortical thickness in the control groups compared to intervention however this did not prove statistically significant. In conclusion, adjuvant chemotherapy may be more beneficial for cases where distraction osteogenesis is being considered to replace segmental bone loss after tumour excision.
The understanding of biological systems is increasingly dependent on modelling and simulations. Numerical simulation is not intended to replace in vivo experimental studies, but to enhance the understanding of biological systems. This study tests the hypothesis that pressure pulses in the SAS are high adjacent to areas of arachnoiditis and investigates the validity of a numerical model by comparison with in vivo experimental findings.
INTRODUCTION: Post-traumatic syringomyelia typically occurs in the spinal cord adjacent to a region of arachnoiditis. This research tests the hypothesis that pressure pulses in the subarachnoid space (SAS) are higher adjacent to the arachnoiditis than in its absence. A fluid-structure interaction (FSI) analysis has been performed to study this behaviour under both normal physiological conditions and in the presence of arachnoiditis. METHOD: A 2-dimensional axisymmetric cylindrical FSI model has been developed to represent the spinal cord and the SAS. CSF flow into the SAS is defined from MRI flow studies. Arachnoiditis is modelled as narrowing of the SAS. This model was based on a patient suffering from post-traumatic syringomyelia. Only the cervical region where arachnoiditis occurs has been modelled, that is from C1 to T1. RESULTS: Pressures in the SAS adjacent to arachnoiditis are almost three times higher (7.2 Pa vs. 21.67 Pa) than without arachnoiditis, with peak pressure occurring at the time of peak fluid inflow from the foramen magnum. DISCUSSION: The model supports the hypothesis that pressure pulses in the SAS are higher in the presence of the arachnoiditis than in normal unobstructed SAS. This elevated pressure may be implicated in syrinx formation.
Low intensity pulsed ultrasound (SAFHS, Exogen Inc.) was used to treat 15 immature New Zealand white rabbits following a mid diaphyseal tibial osteotomy and 1cm bone lengthening using an Orthofix M-100 device. Fifteen matched controls underwent an identical procedure but the ultrasound transducer was not switched on. At 4 and 6 weeks postoperatively the tibiae were analysed using DXA, QCT and 4 point bend mechanical testing. There were no differences identified between the active and control groups at 4 or 6 weeks with respect to bone mineral content or cross-sectional area of the regenerate, nor the bone proximal and distal to it. No improvement in strength of the regenerate was identified in either group. We cannot, therefore, support the use of the SAFHS to accelerate bone healing in patients undergoing limb lengthening. Low intensity pulsed ultrasound has been shown to accelerate fracture healing in animals and humans. The mechanisms of action are discussed and we propose that the intensity of the ultrasound may need to be increased mechanically to stimulate a bone that is rigidly fixed using the M-100 fixator.