Demand for TKR surgery is rising, including a more diverse patient demographic with increasing expectations [1]. Therefore, greater efforts are being devoted to laboratory testing. As a result, laboratory testing may set a clinical performance presumption for surgeons and patients. For example, oxidized ZrNB (Oxinium) femoral components have been projected to show 85% less wear than CoCr femoral components in bench-top testing [2]. However, recent clinical data show no difference in outcomes between Oxinium® and CoCr for the same design [3]. While it does not show lagging peformance for the Oxinium components, it does call into question the predictive ability of simulation. To better understand the performance of these two materials, a non standardized simulator evaluation was conducted. One commercially available design (Legion PS) was evaluated with two variations of femoral component material (n = 3/material) Oxinium® and Cobalt Chromium. All testing was conducted using a 7.5 kGy moderately crosslinked UHMWPE (XLPE). A 6-station knee simulator was utilized to simulate stair-climbing kinematics. The lubricant used was Alpha Calf Fraction serum which was replaced every 0.5 million cycles for a total of 5 million cycles. Soak controls were used to correct for fluid absorption and statistical analysis was performed using the Student's t-test. Total wear rate results for the tibial inserts are shown in Figure 1. There was no statistical difference in volume loss (p = 0.8) or wear rate (p = 0.9) for the Oxinium® system when compared to the CoCrsystem under stair-climbing kinematics. Visual examination revealed typical wear scars and features on the condylar surfaces, including burnishing. These results corroborate the recent clinical data showing no difference between Oxinium® components and their CoCr analogs [3]. The kinematics used here are not a combination of normal level walking with stair-climbing conditions as was published originally for the Oxinium® material [2], but stair-climbing kinematics only. Even though the stair-climbing profile utilized here does not represent standardized kinematics, it provided results that are in line with clinical observations for these femoral materials. Logic suggests that a combined duty cycle is more representative of patient behavior so there must be additional test factors contributing to the prediction previously reported. The goal of bench top testing is to simulate actual clinical performance so test models must be validated as clinicaly relevant in order to be predictive. Furthermore, the results of this test indicate that the different femoral materials evaluated in this study do not alter the wear characteristics of this TKR. This is further supported by a similar previous study showing the relative contribution of design versus materials in terms of wear behavior [4]. The main determination comes from clinical evidence, and as it has been demonstrated by Kim, et al [3], there is no significant difference in the clinical results of the two TKR devices analyzed.
It is difficult for surgeons to make the decision on which design or material to use given multiple available options for total knee arthroplasty. Due to the complex interaction of soft tissue, implant position, patient anatomy, and kinematic demands of the patient, the prosthetic design of a knee device has traditionally been more important than materials. The purpose of this study was to examine the overall influence of both implant design and materials on volumetric wear rates in an Two different designs (single radius and J-curve) with two highly crosslinked materials (Sequentially crosslinked and annealed PE (X3®, Stryker Orthopaedics, Mahwah, NJ) (7.5 kGy moderately crosslinked UHMWPE (XLPE, Smith and Nephew, Memphis, TN)) were evaluated. The two designs tested were the Triathlon® CR knee system (single radius design)(Stryker Orthopaedics, Mahwah, NJ) and the Legion™ Oxinium® CR knee system (J-curve design) (Verilast™, Smith and Nephew, Memphis, TN). Three inserts per condition were tested in this study. This comparison incorporates the effects of both materials and designs: different femoral component materials, different tibial bearing materials, and implant geometry (J-curve vs. single radius saggital profile). All devices were tested under ISO 14243-3 normal walking using an MTS knee simulator for a total of 5 million cycles. Standard test protocols were used for cleaning, weighing and assessing the wear loss of the tibial inserts (ASTM F2025). Soak control specimens were used to correct for fluid absorption with weight loss data converted to volumetric data (by material density). Statistical analysis was performed using the Student's t-test. Total volume loss results are shown in Figure 1. Test results show a 36% reduction (p<0.05) in volume loss and a 30% reduction (p<0.05) in wear rate for the single radius design compared to the J-curve design, respectively. All comparisons are statistically significant by the t-test method (p<0.05). Visual examination of all worn inserts revealed typical wear scars and features on the condylar surfaces, including burnishing. Results indicate superior wear resistance for the single radius system. This finding indicates that a combination of implant design and prosthesis material plays a significant role in knee wear rates. The