Rottinger published a description of an anterior muscle sparing approach to the hip. It utilizes the same muscle interval as the classic WatsonJones approach between the gluteus medius laterally and tensor fascia lata medially. However, this technique has the disadvantage of needing asplit table and a sterile bag to mobilize the operative leg as extension, adduction and external rotation are the key points for femoral preparation. This study describes our experience for an equivalent of the Watson Jones approach with a simplified technique for the femoral preparation. Incision starts 1cm distal and 3cm posterior to the ASIS and continues distally for about 8–10 cm along the straightline joining the lateral edge of the patella. It can be extended proximally or distally if necessary. The surgeon is placed posteriorly and the assistant anteriorly. The hip is dislocated with extension and external rotation to osteotomize the femoral neck. During the preparation of the acetabulum the femur is pushed posteriorly with internal rotation. Steinman pins are placed around the acetabulum to improve visualization for reaming and implanting theacetabular components. The femur is then exposed in a simplified way. The operated limb remains on the table. It is adducted above the contralateral limb and rotated outward to allow the femoral metaphysis to protrude. The foot is placed on the edge of the table beside the assistant, the knee is maintained with 45° flexion. The hip capsule is released postero-laterally to improve the femur exposure using Hohman retractors without cutting the short external rotator muscles. Femoral preparation is performed in this position. Once the appropriate implant is selected, the desired head trials are placed. The hip is reduced and the length and stability can be checked with the leg free. In case of isolated cup revision, the femoral head can be conserved. In case of femoral revision, a femorotomy can be easily performed due to the possibility of extended and stable exposure of the femur. Table 1 summarizes the main data of the series.Introduction
Material and Methods
The combination of spinal fusion and THP is not exceptional. Disorders of the pelvic tilt and stiffness of the lumbosacral junction modify the adaptation options while standing or sitting. Adjusting the cup can be difficult and THP instability is a potential risk. This study reports an experience with EOS® simultaneous measurements on AP and lateral views of spine and hips in THP patients. 29 men and 45 women were included in this prospective study. 21cases had bilateral THP. Patients were separated into two groups: long fusions including the thoraco-lumbar junction (group 1) and shorter fusions below L1 (group 2). We analyzed the impact of the arthrodesis on the position of the pelvis by measuring variations of the sacral slope (SS) and APP angle. Cup position was defined by coronal inclination and functional anteversion in the horizontal plane standing and sitting. We compared the data to a previous series of 150 THP patients with asymptomatic and non fused spine.Introduction
Material and methods
The viscoelastic cervical disk prosthesis ESP is an innovative one-piece deformable but cohesive interbody spacer. It is an evolution of the LP ESP lumbar disk implanted since 2006. CP ESP provides 6 full degrees of freedom about the 3 axes including shock absorption. The prosthesis geometry allows limited rotation and translation with resistance to motion (elastic return property) aimed at avoiding overload of the posterior facets. The rotation center can vary freely during motion (figure 1) It thus differs substantially from current prostheses. This study reports the results of a prospective series of 49 patients who are representative of the current use of the ESP implant since 2012. The surgeries were performed by 3 senior surgeons. There were 34 women and 15 men in this group. The average age was 44±7 (32–59). The implantation was single level in 78 % of cases. 55 CP ESP prostheses were analyzed. Clinical data and X-rays were collected at the preoperative time and at 3, 6, and 12 months post-op. The functional results were measured using Neck and Arm VAS, NDI, SF-36, (physical componentPCS and mental component MCS). The analysis was performed by a single observer who was independent from the selection of patients and from the surgical procedure.Introduction
Material and methods
The assessment of leg length is essential for planning the correction of deformities and for the compensation of length discrepancy, especially after hip or knee arthroplasty. CT scan measures the “anatomical” lengths but does not evaluate the “functional” length experienced by the patients in standing position. Functional length integrates frontal orientation, flexion or hyperextension. EOS system provides simultaneously AP and lateral measures in standing position and thus provides anatomical and functional evaluations of the lower limb lengths. The objective of this study was to measure 2D and 3D anatomical and functional lengths, to verify whether these measures are different and to evaluate the parameters significantly influencing these potential differences 70 patients without previous surgery of the lower limbs (140 lower extremities) were evaluated on EOS images obtained in bipodal standing position according to a previously described protocol. We used the following definitions: anatomical femoral length between the center of the femoral head (A) and center of the trochlea (B) anatomical tibial length between the center tibial spine (intercondylar eminence) (C) and the center of the ankle joint (D) functional length is AD global anatomical length is AB + CD Other parameters measured are HKA, HKS, femoral and tibial mechanical angles (FMA, TMA), angles of flexion or hyperextension of the knee, femoral and tibial torsion, femoro-tibial torsion in the knee, and cumulative torsional index (CTI). All 2D et3D measures were evaluated and compared for their repeatability.Introduction
Material and Methods
The gold standard for knee surgery is the restoration of the so-called «neutral mechanical alignment ». Recent literature as pointed out the patients with «constitutional varus »; in these cases, restoring neutral alignment could be abnormal and even undesirable. The same situation can be observed in patients with «constitutional valgus alignment ». To date, these outliers cases have only been explored focusing on the lower limb; the influence of the pelvic morphotype has not been studied. Intuitively, the pelvic width could be a significant factor. The EOS low dose imaging technique provides full body standing X-rays to evaluate the global anatomy of the patient. This work explores the influence of the pelvic parameters on the frontal knee alignment. – We included 170 patients (340 lower extremities). 2 operators performed measurements once per patient on AP X-rays. The classical anatomical parameters were: Femoral mechanical angle (FMA) Tibial mechanical angle (TMA) Hip knee shaft angle (HKS) Hip knee ankle angle (HKA) Femoral and tibial lengths The morphotype was evaluated by: the distances between the center of two femoral heads (FHD), between knees (KD) and between ankles (AD) the medial neck-shaft angle (MNSA) the femoral offset The horizontal distance between the limb mechanical axis (line passing from center of the femoral head to the center of the ankle) and the center of the knee was called the intrinsic mechanical axis deviation (IMAD) (fig 1). The horizontal distance between the pelvic mechanical axis (line from the center of the sacral plate to the center of the ankle) and the center of the knee was called the global mechanical axis deviation (GMAD) (fig 2). Inter-Operator Reliability was calculated with Intra-class Correlation Coefficient (ICC) and Inter-Reader Agreement was assessed with Bland-Altman test. A relationship between IMAD and GMAD to the other parameters was assessed using Pearson's correlation coefficient.Introduction
Material and methods
Coronal misalignment of the lower limbs is closely related to the onset and progression of osteoarthritis. In cases of severe genu varus or valgus, evaluating this alignment can assist in choosing specific surgical strategies. Furthermore, restoring satisfactory alignment after total knee replacement promotes longevity of the implant and better functional results. Knee coronal alignment is typically evaluated with the Hip-Knee-Ankle (HKA) angle. It is generally measured on standing AP long-leg radiographs (LLR). However, patient positioning influences the accuracy of this 2D measurement. A new 3D method to measure coronal lower limb alignment using low-dose EOS images has recently been developed and validated. The goal of this study was to evaluate the relevance of this technique when determining knee coronal alignment in a referral population, and more specifically to evaluate how the HKA angle measured with this 3D method differs from conventional 2D methods. 70 patients (140 lower extremities) were studied for 2D and 3D lower limb alignment measurements. Each patient received AP monoplane and biplane acquisition of their entire lower extremities on the EOS system according the classical protocols for LLR. For each patient, the HKA angle was measured on this AP X-ray with a 2D viewer. The biplane acquisition was used to perform stereoradiographic 3D modeling. Valgus angulation was considered positive, varus angulation negative. Student's T-test was used to determine if there was a bias in the HKA angle measurement between these two methods and to assess the effect of flexion/hyperextension, femoral rotation and tibial rotation on the 2D measurements. One operator did measurements 2 times.Introduction
Materials and methods
This study of retrieved 28 mm Metasul™ (cemented) revealed for the first time adverse wear effects created by impingement-subluxation in MOM. The 10 cases selected (with femoral stems) had annual follow-up 3–11 years. (1) Unequivocal evidence here shows that all heads routinely subluxed from the Metasul liners. Femoral stems revealed well-demarcated notches (DN) on necks and trunnions (Fig. 1a: n = 6), shallow cosmetic blemishes (Fig. 1b CB: n = 4), and abrasion by cement (Fig. 1b: PMMA). As demonstrated by EOS radiographs, impingement locations varied with implant positioning, pelvic mobility and patient functionality – both anterior and posterior notching (Fig. 1). The first impingement notch occurred with head located (Fig. 2a), whereas the head had subluxed from the cup at 2nd notch (Fig. 2b). The model demonstrated that patients gained 20° motion by such head-subluxation manoeuvres. It was surprising that there was no collateral damage evident on the liners. Even with severe notching of Ti6Al4V and CoCr stems, the cup rims generally appeared well-polished. Femoral heads revealed macro-stripe damage on articular surfaces (Fig. 3), as did cups. Basal and polar macro-stripes on heads were always located at hip impingement positions. The equatorial stripes were formed at main-wear zone boundaries. Thus equatorial stripes were likely created by some form of rim-impact damage (micro-separation) or by local ingress of 3rd-body wear particles under the cup rim. Micro-grooving was evident within these macro-size stripes and frequently featured large raised lips (Fig. 3), interpreted as signs of adverse 3rd-body wear mechanisms, and rarely described.(2) It would appear that large metal particulates were released during MOM impingement-subluxation manoeuvres and circulated the hip joint to producing severe 3rd-body abrasion. Gradual decomposition of such large debris to nano-sized particulates under joint loading would then produce the often-referenced ‘self polishing’ effect of CoCr. EDS studies revealed metal smears on the CoCr surfaces containing the elements of titanium alloy (Ti, Al, V). This was further evidence of impingement-subluxation manoeuvres.(1, 3) In-vivo cup wear patterns also appeared much larger than those produced in MOM simulators. Such differences likely reflected head-subluxation in vivo, whereby heads unconstrained by the subluxation maneuver were free to orbit up and even cross cup rims, i.e. “edge wear”. This appears to be the first study detailing the adverse wear mechanisms in MOM bearings. There are two limitations to our retrieval study, a) these wear results may not be representative for all MOM designs, and b) it is unknown whether such results have relevance to MOM cases continuing successfully.
Accurate evaluation of femoral offset is difficult with conventional anteroposterior (AP) X-rays. Routine CT imaging is costly and exposes patients to a significant dose of radiation. The EOS® imaging system is an innovative slot-scanning radiography system that makes possible the acquisition of simultaneous and orthogonal AP and lateral images of the patient in standing position. These 2-dimensional (2D) images are equivalent to standard plane X-rays. Three-dimension (3D) reconstructions are obtained from these paired images according to a validated protocol. This prospective study explores for the first time the value of the EOS® imaging system for comparing measurements of femoral offset obtained from 2D images and 3D reconstructions. Following our standard protocol, we included a series of 100 patients with unilateral total hip arthroplasty (THA). The 2D offset was measured on the AP view with the same protocol as for standard X-rays. The 3D offset was calculated from the reconstructions based on the orthogonal AP and lateral views. Reproducibility and repeatability studies were conducted for each measurement. We compared the 2D and 3D offsets for both hips (with and without THA).Introduction
Materials and Methods
The viscoelastic lumbar disk prosthesis ESP is an innovative one-piece deformable but cohesive interbody spacer; it provides 6 full degrees of freedom about the 3 axes including shock absorption. The prosthesis geometry allows limited rotation and translation with resistance to motion (elastic return property) aimed at avoiding overload of the posterior facets. The rotation center can vary freely during motion. It thus differs substantially from current prostheses. This study reports the results of a prospective series of 120 patients who are representative of the current use of the ESP implant since 2006. The surgeries were performed by 2 senior surgeons. There were 73 women and 47 men in this group. The average age was 42 (27–60). The average body mass index was 24.2 kg/m2 (18–33). The implantation was single level in 89% of cases. 134 ESP prostheses were analyzed. Clinical data and X-rays were collected at the preoperative time and at 3, 6, 12, 24, and 36 months post-op. The functional results were measured using VAS, GHQ 28, ODI, SF-36, (physical component PCS and mental component MCS. The analysis was performed by a single observer who was independent from the selection of patients and from the surgical procedure.Introduction
Material and methods
Controversy exists over the role of fretting-corrosion in modular junctions of large-diameter metal-on-metal (MOM) heads given the many design plus alloy mix-and-match variations. Overall data was also scant regarding a) fitting stem trunnions to head tapers, b) role of taper angles, c) role of smooth vs threaded trunnion junctions, d) role of head neck-lengths and e) role of head diameters. While the “12: 14” taper has been used with small CoCr heads for 40 years, we could not find retrieval analyses on this European ‘gold-standard’. We therefore selected 10 femoral stems with 28 mm modular heads for analysis (3–8 years follow-up). Unique to this study were the threaded taper profiles on both stems and heads (Fig. 1). Six stems were cemented Ti6Al4V (Alize, FH-Orthopedics, France) with 12/14 taper angle defined as 5° 42′. These represented Ti64: CoCr combinations from 2 vendors. The other four were CoCr stems including the CoCrMo (Protasul-2) and CoNiCrMo (Protasul-10) alloys (cemented and HA-coated; Sulzer, Switzerland). These CoCr: CoCr combinations from one vendor had “12/14” stem-taper defined as 5° 38′. Anatomical positioning of Metasul heads (Sulzer, Switzerland) was identified by main-wear zone maps. Femoral heads were then bi-valved in horizontal plane for direct imaging by interferometry (WLI) and SEM. Visual corrosion mapping (3) was recorded digitally in 4 anatomical views. Quantitative analysis used 1 to 5 taper zones with 6-replicate measurements per zone (Fig. 1). The WLI and SEM studies showed that non-contacting taper zones inside CoCr heads (Fig. 2) were threaded with pitch of 70 μm (PV: peak-valley depth = 5–7 μm). The non-contact zones on Sulzer stems had 130 μm pitch (PV = 4–8 μm) whereas Alize stems had 210 μm pitch (PV = 10–12 μm). Threads on both stem types were much coarser than CoCr heads; Ti64 stem threads were much coarser than CoCr stems. In contact zones, the Metasul threads had flattened (avg. roughness = 0.45 μm Ra). With CoCr stems there was little difference. Difference in pitch of stem-threads vs head-threads indicated there was no imprinting onto head tapers. Nor were there statistically significant differences evident in the contact zones along CoCr or Ti64 tapers. Small damaged areas (Fig. 3: arrows) may have been due to alternatively; initial machining, surgical impaction, in-vivo cold-welds, fretting, corrosion, or from surgical-removal. The as labeled “corrosion damage” was well within the “mild” grade for all implants.(3) Thus even with this considerable variety of design and material parameters, we were satisfied that these gold-standard taper junctions with threaded interfaces had performed very well with 28 mm MOM at 3–8 years follow-up.
The position and orientation of the lower extremities are fundamental for planning and follow-up imaging after arthroplasty and lower extremity osteotomy. But no studies have reported the reproducibility of measurements over time in the same patient, and experience shows variability of the results depending on the protocols for patient positioning. This study explores the reproducibility of measurements in the lower extremity with the patients in “comfortable standing position” by the EOS® imaging system. Two whole-body acquisitions were performed in each of 40 patients who were evaluated for a spine pathology. The average interval between acquisitions was 15 months (4–35 months). Patients did not have severe spine pathology and did not undergo any surgery between acquisitions. The “comfortable standing position” is achieved without imposing on the patient any specific position of the lower limbs and pelvis. All the measurements were performed and compared in both 2- and 3-dimensional images. Distances between the centers of the femoral heads and between the centers of the knees and ankles were measured from the front. The profile is shown by the flexion angle between the axis of the femur (center of the femoral head and the top of the line Blumensaat) and the axis of the tibia.Introduction
Materials and Methods
Unlike conventional radiographic methods, the newly introduced EOS system provides simultaneously-synchronized anteroposterior (AP) and true-lateral (LAT) x-ray images. EOS offers considerable potential for calculating parameters such as true femoral and acetabular angular positioning, impingement sites, and also for measuring wear in polyethylene cups. In this study we used THA wear-simulation fixtures to assess 3D-wear in polyethylene cups using EOS algorithms. A validated phantom apparatus was used to simulate values of three-dimensional wear, controlled in the 3 directions (antero-posterior, medio-lateral, cranio-caudal) using micrometers. (Figure 1) 24 simulations of wear with controlled amplitudes and directions were imaged using the biplane EOS slot-scanning system. Wear amplitudes were between 0 and 3464 μm. Using dedicated software, wear was measured by a 2D/3D matching of 3D spheres onto the 2D frontal and lateral radiographs, allowing the determination of the 3D coordinates of both the cup and femoral head centers and thus the calculation of a 3D wear vector. (Figure 2) Measured wear vector were compared to real wear vectors in terms of amplitude and direction.3D wear vectors were measured twice by 3 independent observers (for a total of 144 measurements) in order to evaluate intra- and inter-observer reliability. There was a strong correlation between the measured wear amplitude and the real wear amplitude (Pearson's r = 0,99). Mean error when comparing wear measurement amplitude with real wear amplitude was 356 μm (SD = 127 μm). None of the 144 measurements presented an error over 1 mm. The accuracy of wear direction evaluation was highly correlated with wear amplitude (Spearman's rho = 0,98), the measurement of 3D wear direction presenting an accuracy better than 15° for wear amplitudes over 1,5 mm. Intra-observer errors for wear amplitude were between 138 μm and 221 μm depending on the observer. Inter-observer error for wear amplitude was 333 μm.Material and methods
Results
Femoral stem anteversion after total hip arthroplasty (THA) has always been assessed using CT scan in supine position. In this study, we evaluated the anteversion of the femoral prosthesis neck in functional standing position using EOS® technology with repeatability and reproducibility of the measurements. The data obtained were compared with conventional anatomic measurements. We measured the anteversion of the femoral prosthesis neck in 45 consecutive patients who had THA performed in nine hospitals. All measurements were obtained using the EOS® imaging system with patients in comfortable standing position. The orientation of the final vector representing the femoral neck was measured on 3-dimensional reconstructions. The anatomic femoral anteversion was calculated as in a transverse plane relative to the scanner and to the plane of the reconstructed bicondylar femoral segment (femoral prosthesis neck against the femoral condyles). Functional femoral anteversion (FFA) was measured in the horizontal plane relative to the frontal plane of the patient through the center of two femoral heads. FFA embodies true anteversion of the femoral prosthesis neck relative to the pelvis, representing the combined lower extremity anteversion.Introduction
Materials and Methods
Recent literature points out the potential interest of standing and sitting X-rays for the evaluation of THA patients. The accuracy of the anterior pelvic plane measures is questionable due to the variations in the quality of lateral standing and sitting X-rays. The EOS® (EOS imaging, Paris, France) is an innovative slot-scanning radiograph system allowing the acquisition of radiograph images while the patient is in weightbearing position with less irradiation than standard imagers. This study reports the “functionnal” positions of a 150 THA cohort, including the lateral orientation of the cups. The following parameters were measured: sacral slope (SS), pelvic tilt (PT), pelvic incidence (PI) and anterior pelvic plane (APP) sagittal inclination (ASI), frontal inclination (AFI) and planar anteversion (ANT). Irradiation doses were calculated in standing and sitting acquisitions. Variations of sagittal orientation of the cup were measured on lateral standing and sitting images. Descriptive and multivariate analysis were performed for the different parameters studied.Background
Methods