Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
Applied filters
Research

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_3 | Pages 15 - 15
1 Apr 2015
Brydone A Henderson F Allen D
Full Access

Since the establishment of our department a multi-modal approach to thromboprophylaxis that uses aspirin for chemical prophylaxis was adopted. In accordance with the latest national recommendations, our routine chemical prophylaxis following arthroplasty was changed to rivaroxaban in 2012 and then dalteparin in 2013.

This study aimed to compare venous thromboembolism (VTE) rates during the use of the aspirin-based protocol used from 2004 to 2011 with recent, rivaroxaban and dalteparin-based guidelines.

Outcome data from ISD Scotland was retrieved and radiology reports performed for CT pulmonary angiograms and lower limb doppler ultrasound scans in our institution were assessed to identify cases of VTE following primary hip or knee arthroplasty. The incidence of pulmonary embolism (PE) and proximal deep venous thrombosis (DVT) was calculated for each year and compared using a Chi-squared test. Additionally, the change in extended thromboprophylaxis regimen was surveyed by recording the discharge prescriptions for consecutive arthroplasty patients for March every year.

There were 90 radiologically confirmed cases of DVT or PE between 2004 and 2011 (incidence of 0.71%). The DVT/PE rate was subsequently 0.67% in 2012 and 0.69% in 2013, with a further 29 cases identified. This does not represent a significant change in the venous thromboembolism rates and remains below the national incidence of VTE (1.06%).

Aspirin alone was used as chemical thromboprophylaxis in 80.8% of patients from 2004 to 2011, 50.9% in 2012, and 12.1% in 2013.

The incidence of VTE at our centre remains favourable to national figures, but the modification of thromboprophylaxis guidelines will incur additional financial costs and has not had a significant reduction on the rate of VTE.


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_3 | Pages 17 - 17
1 Apr 2015
Brydone A Morrison D Meek R Dalby M Gadegaard N
Full Access

Poly-ether-ether-ketone (PEEK) is a biomaterial commonly used for spinal implants and screws. It is often desirable for orthopaedic implants to osseointegrate, but as PEEK is biologically inert this will not occur. The aim of this project was to determine if injection mould nanopatterning can be used to create a make PEEK bioactive and stimulate osteogenesis in vitro.

PEEK substrates were fabricated by injection mould nanopatterning to produce near-square (NSQ) nanopatterned PEEK and planar (FLAT) PEEK samples. Atomic force microscopy (AFM) and scanning electron microscopy were used to characterize the surface topography. Human bone marrow stromal cells (hBMSCs) were isolated from patients undergoing primary hip replacement operations and seeded onto the PEEK substrates. After 6 weeks the cells were stained using alizarin red S (ARS) stain (to detect calcium) and the von Kossa technique (to detect phosphate) and analyzed using CellProfiler image analysis software to determine: surface coverage; cell number; and expression of either calcium (ARS stain) or phosphate (von Kossa technique).

ARS stain showed calcium expression (quantified relative to the number of cells) was increased on NSQ PEEK compared to FLAT PEEK (not statistically significant) and the surface coverage was similar. Von Kossa staining revealed more surface coverage on FLAT PEEK (69.1% cf. 31.9%), cell number was increased on FLAT PEEK (9803 ± 4066 cf. 4068 ± 1884) and phosphate expression relative to cell number was also increased (seven-fold) on NSQ PEEK (P < 0.05) compared to FLAT PEEK.

Although hBMSCs may adhere to NSQ PEEK in smaller numbers, the cells expressed a relatively larger amount of calcium and phosphate. This indicates that the cells adopted a more osteoblastic phenotype and that nanopatterning PEEK induces hBMSC differentiation and stimulates osteogenesis. Injection mould nanopatterning therefore has the potential to improve osseointegration of PEEK implants in vivo.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_7 | Pages 2 - 2
1 Apr 2014
Brydone A Prodanov L Lamers E Gadegaard N Jansen J Walboomers X
Full Access

Titanium is a popular orthopaedic implant material, but it requires surface modification techniques to improve osseointegration and long term functionality. This project compares a new method of modifying surface topography (nano-patterning) with an existing clinical technology (grit-blasting and acid-etching (GAE)).

Titanium discs were blasted with aluminium oxide and etched in sulphuric and acetic acid. Injection moulded discs (with two different nano-patterns) were coated in titanium by evaporation. The topography and chemistry of the discs was assessed using atomic force microscopy (AFM), scanning electron microscopy (SEM), water contact angle measurements, and X-ray photo-electron spectroscopy (XPS). Two discs were plated bilaterally onto a flattened area of the tibiae of 12 rabbits. Tibiae were removed after 4 and 8 weeks for histological assessment of the bone-implant contact (BIC) ratio.

AFM and SEM demonstrated a difference in pattern between the square array of nano-pits (SQ) and the randomly positioned nano-pits (RAND). The GAE implants exhibited increased surface roughness (Ra = 570nm) compared to the titanium coated SQ and RAND implants (Ra = 12nm). Water contact angle measurements showed the surface had comparable wettability and XPS demonstrated similar chemical compositions, except GAE surfaces contained 6.8% aluminium.

Histological samples analysed at 4 weeks showed a BIC ratio of 36% for GAE, 56% for SQ, and 48% for RAND. At 8 weeks, the BIC ratio was 52% for GAE, 80% for SQ, and 72% for RAND implants. This increase in BIC at 8 weeks for both SQ and RAND implants compared to GAE was statistically significant (P < 0.05).

This project demonstrated there was an increase in interfacial bone to implant contact when using a nano-scale topography incorporating nano-pits compared to conventional grit-blasted acid-etched micro-scale topographies. This enhancement of BIC may reduce long term loosening of orthopaedic implants due to mechanical and biological attrition at the interface.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_7 | Pages 11 - 11
1 Apr 2014
Abram S Marsh A Nicol F Brydone A Mohammed A Spencer S
Full Access

When performing total knee replacement (TKR), surgeons must select a size of tibial component tray that most closely matches the anatomy of the proximal tibia. As implants are available in a limited range of sizes, it may be necessary to slightly under or oversize the component. There are concerns overhang could lead to pain from irritation of soft tissues, and underhang could lead to subsidence and failure.

154 TKRs at 1- or 5-year follow up were reviewed prospectively. Oxford Knee Score (OKS), WOMAC and SF-12 was recorded along with pain scores. Scaled radiographs were reviewed and grouped into perfect sizing (78 TKRs, 50.6%), underhang in isolation (48 TKRs, 31.1%), minor overhang 1–3 mm (10 TKRs, 6.49%) or major overhang >3 mm (18 TKRs, 11.7%).

There was no significant difference in the SF-12 (p=0.356), post-operative OKS (p=0.401) or WOMAC (p=0.466) score. For the OKS, there was no difference for the scores collected at 1 year (p=0.176) or at 5 years (p=0.883).

Pre-operative OKS was well matched between the groups (p=0.152). There was no significant difference in the improvement in OKS from pre-operative scores (p=0.662). There was no significant difference in either the OKS or WOMAC pain scores (p=0.237 and 0.542 respectively).

There was no significant association of medial overhang with?medial knee pain (p=1.000) or lateral overhang with lateral knee pain (p=0.569) when compared to the group of patients with a well sized tibial component.

Our results suggest that tibial component overhang or underhang has no detrimental affect on outcome or pain scores. Surgeons should continue to select the tibial component that most closely fits the rim of the proximal tibia while accepting slight overhang if necessary due to the potential longer-term complications of subsidence and premature failure with an undersized tibial tray.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_31 | Pages 2 - 2
1 Aug 2013
Brydone A Morrison D Meek R Dalby M Gadegaard N
Full Access

Polyetheretherketone (PEEK) is a thermoplastic polymer that is predominant in spinal surgery as the material of choice for spinal fusion cages, and is also used for bone anchors, cruciate ligament interference screws, and femoral stems. It has the distinct advantage of having similar mechanical properties to bone, but its clinical application as implant material is limited by a lack of bioactivity. This project aims to create an PEEK surface capable of osseointegration using a surface modification technique known as oxygen plasma treatment.

PEEK surfaces were injection molded, washed and then treated in a plasma chamber for up to 10 min. Surfaces were characterised using atomic force microscopy (AFM), scanning electron microscopy (SEM), water contact angle measurements and X-ray photo-electron spectroscopy (XPS). Human bone marrow cells were cultured on the surfaces and assessed for calcium production (using alizarin red stain).

Water contact angle measurements show that after plasma treatment, the surfaces become very hydrophilic, before developing a meta-stable state at approx. 6 weeks. AFM and SEM showed destruction of the nano-pits at treatment durations longer than 2 mins. XPS detected a progressive increase in the atomic proportion of oxygen at the surface with increasing plasma treatment duration. There was significantly less alizarin uptake (and hence calcium production) on the untreated PEEK compared to the plasma treated PEEK surfaces (p < 0.05).

These results show that oxygen-plasma treatment can increase calcium production on PEEK surfaces and may improve long term osseointegration of PEEK implants.