Advertisement for orthosearch.org.uk
Results 1 - 7 of 7
Results per page:
The Bone & Joint Journal
Vol. 101-B, Issue 7_Supple_C | Pages 115 - 120
1 Jul 2019
Hooper J Schwarzkopf R Fernandez E Buckland A Werner J Einhorn T Walker PS

Aims

This aim of this study was to assess the feasibility of designing and introducing generic 3D-printed instrumentation for routine use in total knee arthroplasty.

Materials and Methods

Instruments were designed to take advantage of 3D-printing technology, particularly ensuring that all parts were pre-assembled, to theoretically reduce the time and skill required during surgery. Concerning functionality, ranges of resection angle and distance were restricted within a safe zone, while accommodating either mechanical or anatomical alignment goals. To identify the most suitable biocompatible materials, typical instrument shapes and mating parts, such as dovetails and screws, were designed and produced.


The Bone & Joint Journal
Vol. 101-B, Issue 7 | Pages 808 - 816
1 Jul 2019
Eftekhary N Shimmin A Lazennec JY Buckland A Schwarzkopf R Dorr LD Mayman D Padgett D Vigdorchik J

There remains confusion in the literature with regard to the spinopelvic relationship, and its contribution to ideal acetabular component position. Critical assessment of the literature has been limited by use of conflicting terminology and definitions of new concepts that further confuse the topic. In 2017, the concept of a Hip-Spine Workgroup was created with the first meeting held at the American Academy of Orthopedic Surgeons Annual Meeting in 2018. The goal of this workgroup was to first help standardize terminology across the literature so that as a topic, multiple groups could produce literature that is immediately understandable and applicable. This consensus review from the Hip-Spine Workgroup aims to simplify the spinopelvic relationship, offer hip surgeons a concise summary of available literature, and select common terminology approved by both hip surgeons and spine surgeons for future research.

Cite this article: Bone Joint J 2019;101-B:808–816.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 72 - 72
1 Apr 2019
Buckland A Cizmic Z Zhou P Steinmetz L Ge D Varlotta C Stekas N Frangella N Vasquez-Montes D Lafage V Lafage R Passias PG Protopsaltis TS Vigdorchik J
Full Access

INTRODUCTION

Standing spinal alignment has been the center of focus recently, particularly in the setting of adult spinal deformity. Humans spend approximately half of their waking life in a seated position. While lumbopelvic sagittal alignment has been shown to adapt from standing to sitting posture, segmental vertebral alignment of the entire spine is not yet fully understood, nor are the effects of DEGEN or DEFORMITY. Segmental spinal alignment between sitting and standing, and the effects of degeneration and deformity were analyzed.

METHODS

Segmental spinal alignment and lumbopelvic alignment (pelvic tilt (PT), pelvic incidence (PI), lumbar lordosis (LL), PI-LL, sacral slope) were analyzed. Lumbar spines were classified as NORMAL, DEGEN (at least one level of disc height loss >50%, facet arthropathy, or spondylolisthesis), or DEFORMITY (PI-LL mismatch>10°). Exclusion criteria included lumbar fusion/ankylosis, hip arthroplasty, and transitional lumbosacral anatomy. Independent samples t-tests analyzed lumbopelvic and segmental alignment between sitting and standing within groups. ANOVA assessed these differences between spine pathology groups.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 71 - 71
1 Apr 2019
Vigdorchik J Steinmetz L Zhou P Vasquez-Montes D Kingery MT Stekas N Frangella N Varlotta C Ge D Cizmic Z Lafage V Lafage R Passias PG Protopsaltis TS Buckland A
Full Access

Introduction

Hip osteoarthritis (OA) results in reduced hip range of motion and contracture, affecting sitting and standing posture. Spinal pathology such as fusion or deformity may alter the ability to compensate for reduced joint mobility in sitting and standing postures. The effects of postural spinal alignment change between sitting and standing is not well understood.

Methods

A retrospective radiographic review was performed at a single academic institution of patients with sitting and standing full-body radiographs between 2012 and 2017. Patients were excluded if they had transitional lumbosacral anatomy, prior spinal fusion or hip prosthesis. Hip OA severity was graded by the Kellgren-Lawrence grades and divided into two groups: low-grade OA (LOA; grade 0–2) and severe OA (SOA; grade 3–4). Spinopelvic parameters (Pelvic Incidence (PI), Pelvic Tilt (PT), Lumbar Lordosis (LL), and PI-LL), Thoracic Kyphosis (TK; T4-T12), Global spinal alignment (SVA and T1-Pelvic Angle; TPA; T10-L2) as well as proximal femoral shaft angle (PFSA: as measured from the vertical), and hip flexion (difference between change in PT and change in PFSA) were also measured. Changes in sit-stand radiographic parameters were compared between the LOA and SOA groups with unpaired t-test.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 97 - 97
1 Apr 2019
Vigdorchik J Cizmic Z Novikov D Meere PA Schwarzkopf R Buckland A
Full Access

Introduction

A comprehensive understanding of pelvic orientation prior to total hip arthroplasty is necessary to allow proper cup positioning and mitigate the risks of complications associated with component malpositioning. Measurements using anteroposterior (AP) radiographs have been described as effective means of accurately predicting pelvic orientation. The purpose of our study was to describe the inter- and intra-observer reliability and predictive accuracy of predicting pelvic tilt using AP radiographs.

Methods

Five fellowship-trained orthopaedic surgeons independently analyzed pelvic tilt, within 10 degrees, for 50 different AP pelvis radiographs. All surgeons were blinded to patient information, diagnosis, and correct measurements prior to analysis. Responses were then compared to correct measurements using sitting-standing AP and lateral stereoradiographs.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 97 - 97
1 Feb 2017
DelSole E Vigdorchik J Schwarzkopf R Buckland A
Full Access

Background

Spinal deformity has a known deleterious effect upon the outcomes of total hip arthroplasty and acetabular component positioning. This study sought to evaluate the relationship between severity of spinal deformity parameters and acetabular cup position, rate of dislocation, and rate of revision among patients with total hip arthroplasties and concomitant spinal deformity.

Methods

A prospectively collected database of patients with spinal deformity was reviewed and patients with total hip arthroplasty were identified. The full body standing stereoradiographic images (EOS) were reviewed for each patient. From these images, spinal deformity parameters and acetabular cup anteversion and inclination were measured. A chart review was performed on all patients to determine dislocation and revision arthroplasty events. Statistical analysis was performed to determine correlation of deformity with acetabular cup position. Subgroup analysis was performed for patients with spinal fusion, dislocation events, and revision THA.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 59 - 59
1 May 2012
Buckland A Dowsey M Stoney J Hardidge A Ng K Choong P
Full Access

The triple taper polished cemented stem (C-stem, DePuy) was developed to promote calcar loading, and reduce proximal femoral bone resorption and aseptic loosening. We aimed to evaluate the changes in peri-prosthetic bone mineral density using Dual Energy X-ray Absorbtiometry (DEXA) after total hip arthroplasty (THA) using the C-stem prosthesis.

One hundred and three patients were recruited voluntarily through and single institution for THA. The prosthesis used was the triple-taper polished cemented C-Stem (De Puy, Warsaw, Indiana, USA). DEXA scans were performed pre- operatively, then at day for, three months, nine months, 18 months and 24 months post-operativley. Scans were analysed with specialised software (Lunar DPX) to measure bone mineral density (BMD) in all seven Gruen zones at each time interval. Changes in calcar BMD were also correlated with patient age, sex, surgical approach, pre-operative BMD and post-operative mobility to identify risk factors for periprosthetic bone resorption.

One hundred and three patients underwent 103 primary THA over a five-year period (98 osteoarthritis; 5 AVN). No femoral components were loose at the two year review and none were revised. The most marked bone resorption occured in Gruen zones 1 and 7, and was best preserved in zone 5. BMD decreased rapidly in all zones in the first three months post-operatively, after which the rate of decline slowed substantially. BMD was better preserved medially (zones 6 and 5) than laterally (zones 2 and 3) at 24 months. There was delayed recovery of BMD in all zones except zones 4 and 5.

High pre-operative T-scores (>2.0) in the spine, ipsilateral and contralateral femoral neck were associated with the higher post-operative BMD and less bone resorption at all time intervals in Gruen zone 7. Pre-operative osteopenia and osteoporosis were associated with low BMD and accelerated post-operative bone resorption in zone 7.

Patients whose mobility rendered them housebound had lower post-operative BMD, and accelerated post-operative BMD loss in zone 7 when compared to non-housebound patients. Females had a lower post-operative BMD and greater loss of BMD in zone 7. Patient age and surgical approach did not effect post-operative BMD or rate of bone resorption in zone 7.

The triple-taper femoral stem design did not show an increase in periprosthetic bone density at the proximal femur at two years post-operative. Calcar bone resorption is accelerated by low pre-operative BMD, poor post-operative mobility, and in females. Age and surgical approach do not have significant effects on calcar bone remodelling.