Despite improvements in prosthesis design, the clinical outcome of total hip arthroplasty still has 10% failure rate after 10 years. Component malpositioning can lead to instability, impingement, excessive wear and loosening. Computer-assisted procedures are expected to improve the accuracy of component positioning, and therefore the long-term outcome. We present an original hip navigation system that allows controlling leg lengthening, offset and stability without the use of the pelvic anterior plane. Because the reliability of the pelvic anterior plane (Lewinnek plane) remains discussed, we present a computer-assisted hip replacement using a functional femoral reference plane. Direction and depth of the acetabular reaming and progression of the femoral rasp are calculated by a sophisticated algorithm, as well as the components' final position, in order to control leg lengthening and offset. In addition, the ROM to impingement (and therefore the stability) is continuously displayed relative to the position of the components. Simple graphical and numerical data in addition to virtual instruments displayed on the screen aid the surgeon during the entire procedure.Introduction
Material and Methods
Reoperations to manage unstable total hip arthroplasty are reported with a high failure rate. The dual mobility cup (figure 1) (mobile polyethylene component between the prosthetic head and the outer metal shell) is a useful option in such cases. The purpose of this retrospective study was to assess the clinical and radiologic features associated with the dual mobility cup. Fifty one unstable total hip arthroplasties (32 females, 19 males) were revised using a dual mobility socket at our institution between March 2000 and February 2005. Mean age at reoperation was 67 year old (range, 35 to 98). The outcome of the revision procedure was assessed using the Harris Hip Score, and complications were determined by detailed review of the patient's records. Anteroposterior and lateral radiographs of the involved joint were reviewed to assess the position of the prosthesis and to look for osteolysis and signs of loosening of the implant.Introduction
Materials and Methods
A biopsy was obtained in all cases (seven under scan guidance). Six patients required complementary surgical biopsy. According to the O’Neel and Ackermann classification, the tumours were grade I in five patients, grade II in two, grade III in three. Tumour classification according to the Enneking topography was: zone I one patient, zone I and II one patient, zone I+II+III one patient, zone II three patients, zone II+III three patients, and zone III one patient. Careful search for extension failed to identify metastasis preoperatively in any patient. For six patients, tumour resection was performed without reconstruction. Resection was associated with a Pugent reconstruction in three patients. All patients were reviewed with an AP view of the pelvis and a chest x-ray.