Advertisement for orthosearch.org.uk
Results 1 - 10 of 10
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_8 | Pages 18 - 18
10 May 2024
Joseph R Callon K Lin J Matthews B Irwin S Williams D Ashton N Crawford H Wen J Swift S Cornish J
Full Access

Introduction

Major trauma during military conflicts involve heavily contaminated open fractures. Staphylococcus aureus (S. aureus) commonly causes infection within a protective biofilm. Lactoferrin (Lf), a natural milk glycoprotein, chelates iron and releases bacteria from biofilms, complimenting antibiotics. This research developed a periprosthetic biofilm infection model in rodents to test an Lf based lavage/sustained local release formulation embedded in Stimulin beads.

Method

Surgery was performed on adult rats and received systemic Flucloxacillin (Flu). The craniomedial tibia was exposed, drilled, then inoculated with S. aureus biofilm. A metal pin was placed within the medullary cavity and treatments conducted. Lf in lavage solutions: The defect was subject to 2× 50 mL lavage with 4 treatment groups (saline only, Lf only, Bactisure with Lf, Bactisure with saline). Lf embedded in Stimulin beads: 4 bead types were introduced (Stimulin only, Lf only, Flu only, Lf with Flu). At day 7, rats are processed for bioluminescent and X-ray imaging, and tibial explants/pins collected for bacterial enumeration (CFU).


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 28 - 28
4 Apr 2023
Bolam S Park Y Konar S Callon K Workman J Monk P Coleman B Cornish J Vickers M Munro J Musson D
Full Access

Obesity is associated with poor outcomes and increased risk of failure after rotator cuff (RC) repair surgery. The effect of diet-induced obesity (DIO) on enthesis healing has not been well characterised and whether its effects can be reversed with dietary intervention is unknown. We hypothesised that DIO would result in inferior enthesis healing in a rat model of RC repair and that dietary intervention in the peri-operative period would improve enthesis healing.

A total of 78 male Sprague-Dawley rats were divided into three weight-matched groups from weaning and fed either: control diet (CD), high-fat diet (HFD), or HFD until surgery, then CD thereafter (HF-CD). After 12 weeks the left supraspinatus tendon was detached, followed by immediate surgical repair. At 2 and 12 weeks post-surgery, animals were cullers and RCs harvested for biomechanical and histological evaluation. Body composition and metabolic markers were assessed via DEXA and plasma analyses, respectively.

DIO was established in the HFD and HF-CD groups prior to surgery, and subsequently reversed in the HF-CD group after surgery. At 12 weeks post-surgery, plasma leptin concentrations were higher in the HFD group compared to the CD group (5.28 vs. 2.91ng/ml, P=0.003). Histologically, the appearance of the repaired entheses was poorer in both the HFD and HF-CD compared to the CD group at 12 weeks (overall histological score 6.20 (P=0.008), 4.98 (P=0.001) and 8.68 out of 15, respectively). The repaired entheses in the HF-CD group had significantly lower (26.4 N, P=0.028) load-at-failure 12 weeks post-surgery compared to the CD group (34.4 N); while the HFD group was low, but not significantly different (28.1 N, P=0.096). Body mass at the time of surgery, plasma leptin and body fat percentage were negatively correlated with histological scores and plasma leptin with load-at-failure 12 weeks post-surgery.

DIO impaired enthesis healing in this rat RC repair model, with inferior biomechanical and histological outcomes. Restoring normal weight with dietary change after surgery did not improve healing outcomes. Exploring interventions that improve the metabolic state of obese patients and counselling patients appropriately about their modest expectations after repair should be considered.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 80 - 80
23 Feb 2023
Bolam S Park Y Konar S Callon K Workman J Monk A Coleman B Cornish J Vickers M Munro J Musson D
Full Access

We hypothesised that diet-induced obesity (DIO) would result in inferior enthesis healing in a rat model of rotator cuff (RC) repair and that dietary intervention in the peri-operative period would improve enthesis healing.

A total of 78 male Sprague-Dawley rats were divided into three weight-matched groups from weaning and fed either: control diet (CD), high-fat diet (HFD), or HFD until surgery, then CD thereafter (HF-CD). After 12 weeks, the left supraspinatus tendon was detached, followed by immediate surgical repair. At 2 and 12 weeks post-surgery, animals were culled, and RCs harvested for biomechanical and histological evaluation. Body composition and metabolic markers were assessed via DEXA and plasma analyses, respectively.

DIO was established in the HFD and HF-CD groups before surgery and subsequently reversed in the HF-CD group after surgery. Histologically, the appearance of the repaired entheses was poorer in both the HFD and HF-CD groups compared with the CD group at 12 weeks after surgery, with semiquantitative scores of 6.2 (P<0.01), 4.98 (P<0.01), and 8.7 of 15, respectively. The repaired entheses in the HF-CD group had a significantly lower load to failure (P=0.03) at 12 weeks after surgery compared with the CD group, while the load to failure in the HFD group was low but not significantly different (P=0.10). Plasma leptin were negatively correlated with histology scores and load to failure at 12 weeks after surgery.

DIO impaired enthesis healing in this rat RC repair model, with inferior biomechanical and histological outcomes. Restoring normal weight with dietary change after surgery did not improve healing outcomes. Circulating levels of leptin significantly correlated with poor healing outcomes. This pre-clinical rodent model demonstrates that obesity is a potentially modifiable factor that impairs RC healing and increases the risk of failure after RC surgery.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 69 - 69
1 Nov 2018
Zhu M Thambyah A Tuari D Callon K Tay M Patel D Coleman B Cornish J Musson D
Full Access

Surgical repair of rotator cuff tears have high failure rates (20–70%), often due to a lack of biological healing. Augmenting repairs with extracellular matrix-based scaffolds is a common option for surgeons, although to date, no commercially available product has proven to be effective. In this study, a novel collagen scaffold was assessed for its efficacy in augmenting rotator cuff repair. The collagen scaffold was assessed in vitro for cytocompatability and retention of tenocyte phenotype using alamarBLUE assays, confocal imaging and real-time PCR. Immunogenicity was assessed in vitro by the activation of pre-macrophage cells. In vivo, using a modified rat rotator cuff defect model, supraspinatus tendon repairs were carried out in 46 animals. Overlay augmentation with the collagen scaffold was compared to unaugmented repairs. At 6- and 12-weeks post-op the repairs were tested biomechanically to evaluate repair strength, and histologically for quality of healing. The collagen scaffold supported human tenocyte growth in vitro, with cells appearing morphologically tenocytic and expressing higher tendon gene markers compared to plastic controls. No immunogenic responses were provoked compared to suture material control. In vivo, augmentation with the scaffold improved the histological scores at 12 weeks (8.37/15 vs. 6.43/15, p=0.0317). However, no significant difference was detected on mechanical testing. While the collagen scaffold improved the quality of healing of the tendon, a meaningful increase in biomechanical strength was not achieved. This is likely due to its inability to affect the bone-tendon junction. Future materials/orthobiologics must target both the repaired tendon and the regenerating bone-tendon junction.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 352 - 352
1 May 2009
Gray S Watson M Callon K Williams G Reid I Cornish J
Full Access

Leptin is a major hormonal product of the adipocyte which regulates appetite and reproductive function through its hypothalamic receptors. It has now become clear that leptin receptors are much more widely distributed than just the hypothalamus, and the skeleton has emerged as an important site of action of leptin.

The signalling form of the leptin receptor has been found in several cell types including human osteoblasts, rat osteoblasts and human chondrocytes. In vitro we have shown leptin to an anabolic factor, stimulating osteoblast proliferation and inhibiting osteoclastogenesis. Leptin increases bone mass and reduces bone fragility when administered peripherally but has an indirect inhibitory effect on bone mass via the hypothalamus when administered directly into the central nervous system.

Data from animal models where there is an absence of either leptin production (ob/ob) or its receptor (db/db) have been contradictory. In this study we compared the bone phenotype of leptin receptor-deficient (db/db) and wild-type (WT) mice. Micro-CT analysis was done on proximal tibiae using a Skyscan 1172 scanner. Db/db mice had significantly reduced trabecular bone volume, trabecular thickness and trabecular number and a higher degree of trabecular separation. Cortical bone was also significantly lower in db/db animals in volume, cross-sectional thickness and perimeter.

These results demonstrate that in the absence of leptin signalling there is reduced bone mass indicating that leptin indeed acts in vivo as a bone anabolic factor, mimicking the in vitro results.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 350 - 350
1 May 2009
Williams G Callon K Watson M Naot D Wang Y Xu A Reid I Cornish J
Full Access

Adiponectin, a hormone secreted by adipocytes, regulates energy homeostasis and glucose and lipid metabolism. Plasma levels of adiponectin are negatively correlated with body fat mass. Adiponectin inhibits the formation and activity of osteoclasts and increases the proliferation and differentiation of osteoblasts in vitro. The aim of our study was to determine the bone phenotype of adiponectin knockout mice.

Male adiponectin-deficient (Ad-KO) and wild-type (WT) C57BL/6J mice were sacrificed at 8, 14 and 22 weeks of age. Body weights did not differ between Ad-KO and WT mice. We scanned the left proximal tibia using micro-CT at 5μm resolution and analysed bone microarchitecture by 3D analysis.

We found significant increases in trabecular bone volume (BV/TV) (15.9±1.63 vs. 12.2±0.72%, p=0.02) and trabecular number (3.20±0.18mm-1 vs. 2.32±0.12mm-1, p=0.0009) in 14-week old Ad-KO mice compared to controls. Similar differences between WT and Ad-KO were present in 8 and 22-week old animals but these did not reach statistical significance. Trabecular thickness was significantly greater (0.053±0.001mm vs. 0.048±0.002mm, p=0.04) in 22-week old Ad-KO mice compared to WT.

Ad-KO mice have increased number and volume of trabeculae at 14 weeks of age indicating that the net effect of adiponectin on bone accrual in vivo is inhibitory. These effects are age-dependent. Our data concur with the observations from epidemiological studies in humans that adiponectin negatively correlates with both fat mass and bone mass. Therefore, adiponectin may be a contributor to the link between fat and bone mass.


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 300 - 300
1 Sep 2005
Carstens A Callon K Bava U Pitto R Cornish J
Full Access

Introduction and Aims: Regeneration of bone is an important goal in orthopaedic surgery. The repair of a critical skull defect is a model for investigating the efficacy of cell signalling factors and biomaterials in inducing new bone formation. We aim to investigate a 5mm critical skull defect in the mouse, as an in vivo tool for analysis of potential bone active factors that have been bio-prospected from dairy milk protein.

Method: Adult Swiss CD1 mice were divided into two groups. Each group contained animals treated with vehicle (n=11), milk protein (4mg, n=10) and TGF-β1 (2μg, n=6). Under anaesthetic, a high-speed burr was used to create a five-mm craniotomy in the left parietal bone and a pre-cut collagen sponge with 20μl of the test factor inserted. Fluorochrome labels were administered to facilitate quantitative histological analysis of the defect. The animals were sacrificed on days 14 and 28 and the calvariae excised and fixed. The defects were assessed for percent closure using radiography, transillumination and histology.

Results: The formal analysis of this study is underway at present. TGF-β1 has been shown in the literature to augment the healing of critical skull defects and is included in this study as a positive control. Our radiography results show significantly complete closure of the skull defect in TGF-β1 group.

Preliminary work in our laboratory with this milk protein has shown it to be a novel bone active factor. In vivo, local injection above the calvariae in adult mice resulted in significant increase in bone area and dynamic histomorphometric indices of bone formation. In vitro, the protein is anabolic, an effect that is consequent upon its potent proliferative and anti-apoptotic actions in osteoblasts, and its ability to inhibit osteoclastogenesis.

Conclusions: We believe the critical skull defect in the mouse may be a useful means to assess the role of potential bone active factors in wound healing of osseous defects. The purified milk protein tested may have a physiological role in bone growth and a potential therapeutic application in bone regeneration. We await formal analysis of the specimens to further elucidate this statement.


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_I | Pages 26 - 27
1 Mar 2005
Carstens A Callon K Bavu U Pitto R Cornish J
Full Access

Regeneration of bone is an important goal in orthopaedic surgery, such as in augmentation of fracture healing, spinal fusion and filling of osseous defects. The repair of a critical skull defect is a well-established model for investigating the efficacy of cell signalling factors and biomaterials in inducing new bone formation. We aimed to investigate a 5-mm critical skull defect in the mouse, as an in vivo tool for analysis of potential bone active factors that have been bioprospected from dairy milk protein.

Adult Swiss CD1 mice were divided into 2 groups. Each group contained animals treated with vehicle (n=11), milk protein (4mg, n=10) and TGF-b1 (2μg, n=6). Under anaesthetic a high-speed burr was used to create a 5-mm craniotomy in the left parietal bone and a precut collagen sponge with 20ml of the test factor inserted. Fluorochrome labels were administered to facilitate quantitative histological analysis of the defect. The animals were sacrificed on days 14 and 28 and the calvariae excised and fixed. The defects were assessed for percent closure using radiography, transillumination and histology.

The formal analysis of this study is underway at present. Preliminary work in our laboratory with this milk protein has shown it to be a novel bone active factor. In vivo, local injection above the calvariae in adult mice resulted in significant increase in bone area and dynamic histomorphometric indices of bone formation. In vitro, the protein is anabolic, an effect that is consequent upon its potent proliferative and anti-apoptotic actions in osteoblasts, and its ability to inhibit osteoclastogenesis.

TGF-b1 has been shown in the literature to augment the healing of critical skull defects and is included in this study as a positive control.

We believe the critical skull defect in the mouse may be a useful means to assess the role of potential bone active factors in wound healing.

The purified milk protein used in this study may have a physiological role in bone growth and a potential therapeutic application in bone regeneration. We await formal analysis of the specimens to further elucidate this statement. Further experiments will be required to determine whether it provides results that are reproducible and/or comparable to other models of fracture repair.


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_I | Pages 27 - 27
1 Mar 2005
Carstens A Bava U Naot D Callon K Reid I McCowan S Pitto R Cornish J
Full Access

Paget’s disease of bone is a common disorder characterised by focal areas of increased bone resorption coupled to increased and disorganised bone formation. Pagetic osteoclasts have been studied extensively, however, due to the integral cross-talk between osteoclasts and osteoblasts, we propose that pagetic osteoblasts may also play a key role in the pathogenesis of Paget’s disease. Any phenotypic changes in the diseased osteoblasts are likely to result from alterations in the expression levels of specific genes. To determine any differences in expression between pagetic and non-pagetic osteoblasts and their precursors the gene expression profiles of RANK, RANKL, OPG, VEGF, IL-1beta, IL-6, MIP-1, TNF and M-CSF were investigated in primary cultures of human osteoblasts and in the osteoblast precursor population of bone marrow stromal cells. We present preliminary data of this study.

Trabecular bone explants were finely chopped, washed free of marrow and cellular debris then either snap frozen in liquid nitrogen or placed in flasks to culture outgrowth osteoblast-like cells. Mononuclear stromal cells from bone marrow were isolated and grown in culture flasks. RNA and conditioned media were collected from cultured osteoblasts and stromal cells at confluency. The innovative method of Real-Time PCR, the most accurate technique available at present to quantitatively measure gene expression, was used for the comparison of gene expression levels in our samples. 18S ribosomal RNA was used as an endogenous control to normalise the expression in the various samples.

RANK, MIP-1 and TNF were only detected in stromal cells whereas RANKL, OPG, VEGF, IL-1beta, IL-6 and M-CSF were detected in both osteoblasts and stromal cells. OPG displayed higher expression in osteoblasts while IL-1beta showed higher expression in stromal cells.

To date we have not seen any significant differences in gene expression between pagetic and non-pagetic subjects when comparing a small number of samples. A larger cohort is currently being investigated. We are also comparing levels of secreted proteins in the conditioned media from pagetic and non-pagetic cell cultures. This may lead to further candidate genes involved in the pathology of the pagetic lesion.


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_IV | Pages 487 - 487
1 Apr 2004
Carstens A Pitto R Naot D Callon K Reid I Cornish J Bava U
Full Access

Introduction Paget’s disease of bone is a common disorder characterised by focal areas of increased bone resorption by osteoclasts and disorganised bone formation by osteoblasts. Because there is integral cross-talk between osteoclasts and osteoblasts during normal bone remodelling, we propose that Pagetic osteoblasts may also play a key role in the pathogenesis of Paget’s disease. Any phenotypic changes in the diseased osteoblasts are likely to result from alterations in the expression levels of specific genes.

Methods To determine any differences in expression between Pagetic and non-Pagetic osteoblasts and their precursors the gene expression profiles of RANK, RANKL, OPG, VEGF, IL-1beta, IL-6, MIP-1, TNF and M-CSF were investigated in primary cell cultures of human osteoblasts and in the osteoblast precursor population of bone marrow stromal cells. Trabecular bone explants were finely chopped, washed free of marrow and cellular debris then either snap frozen in liquid nitrogen or placed in flasks to culture outgrowth osteoblast-like cells. Mononuclear stromal cells from bone marrow were isolated and grown in culture flasks. RNA and conditioned media were collected from cultured osteoblasts and stromal cells at confluency. Real-Time PCR was used for the comparison of gene expression. 18S ribosomal RNA was used as an endogenous control to normalise the expression in the various samples.

Results RANK, MIP-1 and TNF were only detected in stromal cells whereas RANKL, OPG, VEGF, IL-1beta, IL-6 and M-CSF were detected in both osteoblasts and stromal cells. OPG displayed higher expression in osteoblasts while IL-1beta showed higher expression in stromal cells. To-date we have not seen any significant differences in gene expression between pagetic and non-pagetic subjects when comparing a small number of samples. A larger cohort is currently being investigated. Mutations in the sequestosome 1 gene have been showed to be associated with Paget’s disease. When a small number of Pagetic samples were sequenced for these mutations we found one out of seven patients (14%) to possess a known transition mutation at position 1215 in this gene.

Conclusions These results may further our understanding of the pathology of Paget’s disease.