Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 15 - 15
11 Apr 2023
Li H Chen H
Full Access

Osteoporosis is a common problem in postmenopausal women and the elderly. 11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) is a bi-directional enzyme that primarily activates glucocorticoids (GCs) in vivo, which is a considerable potential target as treatment for osteoporosis. Previous studies have demonstrated its effect on osteogenesis, and our study aimed to demonstrate its effect on osteoclast activation.

In vivo, we used 11β-HSD1 knock-off (KO) and C57BL6/J mice to undergo the ovariectomy-induced osteoporosis (OVX). In vitro, In vivo, We used 11β-HSD1 knockoff (KO) and C57BL6/J mice to undergo the ovariectomy-induced osteoporosis (OVX). In vitro, bone marrow-derived macrophages (BMM) and bone marrow mesenchymal stem cell (BMSC) of KO and C57BL6/J mice were extracted to test their osteogenic and osteoclastic abilities. We then created osteoclastic 11β-HSD1 elimination mice (Ctsk::11β-HSD1fl/fl) and treated them with OVX. Micro-CT analysis, H&E, immunofluorescence staining, and qPCR were performed. Finally, we conducted the high-throughput sequencing to find out 11β-HSD1 and osteoclast activation related genes.

We collected 6w samples after modeling. We found that KO mice were resistant to loss of bone trabeculae. The same effect was observed in osteoclastic 11β-HSD1 elimination mice. Meanwhile, BVT-2733, a classic inhibitor of 11β-HSD1, inhibited the osteoclast effect of cells without affecting osteogenic effect in vitro. High-throughput sequencing suggested that glucocorticoid receptor (GR) may play a key role in the activation of osteoclasts, which was verified by immunofluorescence staining and WB in vivo and in vitro.

In the process of osteoporosis, 11β-HSD1 expression of osteoclasts is abnormally increased, which may be a new target for inhibiting osteoclast activation and treating osteoporosis.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 146 - 146
4 Apr 2023
Li H Chen H
Full Access

Lumbar diseases have become a major problem affecting human health worldwide. Conservative treatment of lumbar diseases is difficult to achieve ideal results, and surgical treatment of trauma, complications, it is imperative to develop a new treatment method. This study aims to explore the regulatory mechanism of cartilage endplate ossification caused by abnormal stress, and design intervention targets for this mechanism, so as to provide theoretical reference for the prevention and treatment of lumbar degeneration.

In vivo, we constructed spinal instability model in mice. In vitro, we used a mechanical tensile machine to simulate the abnormal stress conditions of the endplate cartilage cells. Through the high-throughput sequencing, we found the enrichment of Hippo signaling pathway. As YAP is a key protein in the Hippo signaling pathway, we then created cartilaginous YAP elimination mice (Col2::YAPfl/fl). The lumbar spine model was constructed again in these mice for H&E, SOFG and immunofluorescence staining. In vitro lentivirus was used to knock out YAP, immunofluorescence staining, WB and qPCR were performed. Finally, we conducted therapeutic experiments by using YAP agonist and AAV5 carrying YAP plasmids.

We collected 8w samples from C57/BL6 mice after modeling. We found ossification of the endplate in mice similar to human disc degeneration. High-throughput sequencing of stretched cells demonstrated high enrichment of the Hippo signaling pathway. By immunofluorescence staining, it was confirmed that Col-II decreased and Col-X gradually increased in the endplate cartilage of mice. This was also confirmed at 7 days after an in vitro stretch of 5% and 12%. Meanwhile, we found that cartilaginous YAP elimination mice developed very severe endplate degeneration. However, the endplate was well protected by intraperitoneal injection of YAP agonist or AAV5-YAP endplate injection, and the results in vitro were consistent with that.

In the process of cartilaginous ossification, abnormal stress regulates Col10a1 to promote cartilage endplate ossification through Hippo signaling pathway mediated YAP, and we expect to find potential drug targets for treatment through this mechanism.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 37 - 37
1 Dec 2021
Chen H Gulati A Mangwani J Brockett C Pegg E
Full Access

Abstract

Objectives

The aim of this study was to develop an open-source finite element model of the ankle for identification of the best clinical treatment to restore stability to the ankle after injury.

Methods

The ankle geometry was defined from the Visible Human Project Female CT dataset available from the National Library of Medicine, and segmented using Dragonfly software (Object Research Systems, 2020). The finite element model was created with FEBio (University of Utah, 2021) using the dynamic nonlinear implicit solver. Linear isotropic material properties were assigned to the bones (E=7300MPa, ν=0.3, ρ=1730kg/m3) and cartilage (E=10MPa, ν=0.4, ρ=1100kg/m3). Spring elements were used to represent the ligaments and material properties were taken from Mondal et al. [1]. Lagrangian contact was defined between the cartilaginous surfaces with μ=0.003. A standing load case was modelled, assuming even distribution of load between the feet. A reaction force of 344.3N was applied to the base of the foot, a muscle force of 252.2N, and the proximal ends of the tibia and fibula were fully constrained.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 74 - 74
1 Dec 2021
Chen H Khong J Huang J
Full Access

Abstract

Objectives

Direct ink writing (DIW) has gained considerable attention in production of personalized medical implants. Laponite nanoclay is added in polycaprolactone (PCL) to improve printability and bioactivity for bone implants. The 3D structure of DIW printed PCL/Laponite products was qualitatively evaluated using micro-CT.

Methods

PCL/LP composite ink was formulated by dissolving 50% m/v PCL in dichloromethane with Laponite loading of up to 30%. The rheological properties of the inks were determined using Discovery HR-2 rheometer. A custom-made direct ink writer was used to fabricate both porous scaffold with 0°/90° lay-down pattern, and solid dumbbell-shaped specimens (ASTM D638 Type IV) with two printing orientations, 0° and 90° to the loading direction in tensile testing. The 3D structure of specimens was assessed using a micro-CT. Independent t-tests were performed with significance level at p<0.05.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 96 - 96
1 Mar 2021
Chen H Stampoultzis T Papadopoulou A Balabani S Huang J
Full Access

Abstract

Objectives

The objective of this study is to investigate the effect of solvents and rheological properties of PCL/Hydroxyapatite ink on the shape fidelity of the 3D printed scaffolds for bone tissue engineering.

Methods

A series of inks were made consisting of 50% (w/v) of polycaprolactone (PCL) filled with 0%, 3.5% and 12.5% (w/V) of hydroxyapatite (HA) in dichloromethane (DCM) and chloroform (CHF). Steady and oscillatory shear rheological tests were performed on a rheometer (Discovery HR-3). Solvent-cast direct ink writing was performed with a custom-made 3D printer for the fabrication of PCL/HA scaffold structures with 2–8 layers. Optical microscope and scanning electron microscopy (SEM) were used to assess the shape fidelity.