LIMB-Q Kids is a new patient-reported outcome measure (PROM) for children with Lower limb differences (LLDs). The objective is to conduct an international field test study. A mixed method multiphase approach was used to develop LIMB-Q Kids. In phase one, a systematic review was conducted to identify concepts from existing PROMs used in research with children with LLDs. A preliminary conceptual framework derived from the systematic review informed an international qualitative study. The data from qualitative interviews were used to form the LIMB-Q Kids, which was further refined through multiple rounds of cognitive debriefing interviews with children. Input was obtained from parents and healthcare professionals from Australia, Canada, Ethiopia, India, UK, and the USA. LIMB-Q Kids was translated and culturally adapted into multiple languages.Introduction
Materials & Methods
A huge commitment is required from patients and families who undergo a limb reconstruction procedure using the hexapod frame. This includes turning the struts on the frame, pin site care and intensive rehabilitation. Montpetit et al (2009) discovered that function, participation, engagement in regular activities of daily living is severely impacted during the hexapod lengthening period. Due to the long duration and burden for families, it is imperative that healthcare professionals understand the impact that the hexapod frame has on functional abilities and health related quality of life (HRQL). This project involved a retrospective review of prospectively collected data on function and HRQL during two periods of time: (1) when the hexapod frame is applied on the child's lower extremity and (2) when the lengthening phase is completed, and the hexapod frame is removed. Data from 38 children (mean age: 12 years SD 3.8) who completed lower extremity reconstruction using the hexapod frame and completed either or both the Pediatric Quality of Life Inventory 4.0 Generic Core Scale (PedsQL) and Pediatric Outcomes data Collection Instrument (PODCI) was included. Analysis included, standardized response means, the non-parametric Wilcoxon test and effect size calculation. A Wilcoxon signed rank test for those children who completed pre and post frame PODCI’;s revealed those scores were significantly greater once the hexapod frame was removed (Md=85.10, n=10) compared to during (Md=66.50, n=10) with a large effect size, r= 1.45. Similar, the PedsQL scores improved post frame removal (Md= 66.30, n=10) compared to during treatment (Md = 53.34, n=10), with a medium size effect, r= 0.62. All subtests improved once the frame was removed. This study provides essential insights into the burden of the hexapod frame for children and provides valuable information for all allied healthcare professionals targeted interventions for health domains. This study shows that children's function improves once the hexapod frame is removed. However, this study highlights the importance for all healthcare professional to address health domains for the duration of the hexapod procedure where the child scored lower e.g. sports and physical function, pain and comfort, happiness from the PODCI. The PedsQL identified lower mean scores in physical and emotional function.
Guided growth is commonly performed by placing an extra-periosteal two-hole plate across the growth plate with one epiphyseal and one metaphyseal screw. Recent work by Keshet et al. (2019) investigated the efficacy of the removal of the metaphyseal screw only (“sleeper plate”) after correction. They concluded the practice to be unnecessary as only 19% of patient show recurrence of deformity. The aim of this study is to examine the incidence of rebound and undesired bony in-growth of the plate (“tethering”) after metaphyseal screw removal only. In this retrospective case series, patient data on 144 plates inserted around the knee was obtained. Plates still in situ (n=69) at time of study and full hardware removal (n=50) were excluded. The remaining 25 plates had a metaphyseal screw only removed after deformity correction. We analyzed the rate of re-bound, tethering and maintenance of correction in two age groups at latest follow-up for a mean of 3.5 years (1.25 to five). Fisher's exact test with Freeman-Halton extension was used to analyze the two by three contingency table. Twenty-five plates were identified as “sleeper plates” in our series. 13 plates (52%) maintained the achieved correction after a mean of 21 months (four to 39), nine plates (36%) required screw re-insertion due to rebound after a mean of 22 months (12-48) from screw removal, and four plates (16%) showed tethering with undesired continuation of guided growth after a mean of 14 months (seven to 22) from screw removal. Younger patients (years at time of plate insertion) had higher rates of rebound and tethering (p=.0112, Fisher's exact test). All Tethering occurred in titanium plates, none occurred in steel plates. The sleeper plate is an acceptable treatment strategy for coronal deformities around the knee. Rebounding and tethering are potential outcomes that occur in younger patients and should be disclosed to patients; titanium plates may increase the risk of tethering, however further long-term follow-up is needed. We stress the importance of close post-operative follow up to identify tethering early and prevent over correction. The sleeper plate technique is a viable option in younger children with congenital abnormalities, however, continued monitoring of alignment is necessary after screw removal to check for rebound and tethering.
Bone age is a radiographical assessment used in pediatric medicine due to its relative objectivity in determining biological maturity compared to chronological age and size.1 Currently, Greulich and Pyle (GP) is one of the most common methods used to determine bone age from hand radiographs.2–4 In recent years, new methods were developed to increase the efficiency in bone age analysis like the shorthand bone age (SBA) and the automated artificial intelligence algorithms. The purpose of this study is to evaluate the accuracy and reliability of these two methods and examine if the reduction in analysis time compromises their accuracy. Two hundred thirteen males and 213 females were selected. Each participant had their bone age determined by two separate raters using the GP (M1) and SBA methods (M2). Three weeks later, the two raters repeated the analysis of the radiographs. The raters timed themselves using an online stopwatch while analyzing the radiograph on a computer screen. De-identified radiographs were securely uploaded to an automated algorithm developed by a group of radiologists in Toronto. The gold standard was determined to be the radiology report attached to each radiograph, written by experienced radiologists using GP (M1). For intra-rater variability, intraclass correlation analysis between trial 1 (T1) and trial 2 (T2) for each rater and method was performed. For inter-rater variability, intraclass correlation was performed between rater 1 (R1) and rater 2 (R2) for each method and trial. Intraclass correlation between each method and the gold standard fell within the 0.8–0.9 range, highlighting significant agreement. Most of the comparisons showed a statistically significant difference between the two new methods and the gold standard; however it may not be clinically significant as it ranges between 0.25–0.5 years. A bone age is considered clinically abnormal if it falls outside 2 standard deviations of the chronological age; standard deviations are calculated and provided in GP atlas.6–8 For a 10-year old female, 2 standard deviations constitute 21.6 months which far outweighs the difference reported here between SBA, automated algorithm and the gold standard. The median time for completion using the GP method was 21.83 seconds for rater 1 and 9.30 seconds for rater 2. In comparison, SBA required a median time of 7 seconds for rater 1 and 5 seconds for rater 2. The automated method had no time restraint as bone age was determined immediately upon radiograph upload. The correlation between the two trials in each method and rater (i.e. R1M1T1 vs R1M1T2) was excellent (κ= 0.9–1) confirming the reliability of the two new methods. Similarly, the correlation between the two raters in each method and trial (i.e. R1M1T1 vs R2M1T1) fell within the 0.9–1 range. This indicates a limited variability between raters who may use these two methods. The shorthand bone age method and an artificial intelligence automated algorithm produced values that are in agreement with the gold standard Greulich and Pyle, while reducing analysis time and maintaining a high inter-rater and intra-rater reliability.
Supracondylar fractures of the humerus (SCH) are the most common fractures sustained following a fall on an outstretched hand in healthy children, and one of the leading causes of hospital admission and surgical intervention. With increasing severity of injury, treatment options become more invasive and the potential for long lasting complications increases. The aim of this study is to examine the causes and circumstances surrounding SCH in public play spaces particularly to determine whether or not the playground equipment implicated in injurious falls is compliant with Canadian Standards Association (CSA) standards. Children aged 6–12 years who sustained SCH while playing at a public play space between 2017 and 2019 were recruited from the paediatric orthopaedic clinic. Public playgrounds within a 50 km radius of the clinic were visited by research assistants. Using GPS coordinates from photographs taken by the children at the site of injury or play structures identified by the children using Google Maps, play structure type, dimensions, height of fall, and the type and depth of the surface material were collected from each site and compared to the relevant CSA standard. Of the 89 SCH injuries reported during the recruitment period, 49 (55%) occurred on public play structures. Thirty-nine injury sites, representing 42 SCH cases, were accessible to conduct site visits and were included in the analysis. Thirteen children (31%) sustained Type One, 19 (45%) were Type Two, and 10 (24%) were Type Three SCHs. The mean child age at injury was 7.13 years. Of the 42 SCH cases, 37 sites had woodchips surfacing (88%); three had rubber (7%), one had cement (2%), and one had sand (2%). Of the 36 sites where woodchip depth measurements could be obtained, only seven (19%) met the minimum CSA depth. Out of the 42 SCH cases, 29 injuries (69%) involved upper body equipment (i.e. monkey bars or similar) and track rides. Fourteen of these 29 injuries (48%) occurred on structures that did not meet CSA standards for fall height. All rotating play structures had less than half of the required clearance between the components. Eighty-six percent of SCH cases occurred in playgrounds where at least one of the required CSA standards was not met. Woodchip surfacing was of particular concern because 81% of woodchip surface depths failed to meet CSA standards. Of the 14 injuries where fall height did not meet CSA standards, 11 (79%) also did not meet minimum CSA surface depth. Field investigation into the characteristics of playgrounds in which children sustain SCH can guide preventative policy and practice measures. Municipalities and school boards should be alerted to the need for regular maintenance of woodchip playground surfacing, in order to remain compliant with the minimum surface depth and prevent serious injuries. Additionally, compliance with minimum surface depths can also decrease fall heights to meet CSA standards. By minimizing the prevalence of SCH injuries occurring on play structures and the need for emergency department visits, the burden to healthcare systems and families of injured children can potentially be reduced.
Though the pathogenesis of Legg-Calve-Perthes disease (LCPD) is unknown, repetitive microtrauma resulting in deformity has been postulated. The purpose of this study is to trial a novel upright MRI scanner, to determine whether any deformation occurs in femoral heads affected by LCPD with weightbearing. Children affected by LCPD were recruited for analysis. Children received both standing weightbearing and supine scans in the MROpen upright MRI scanner, for coronal T1 GFE sequences, both hips in field of view. Parameters of femoral head height, width, and lateral extrusion of affected and unaffected hips were assessed by two independent raters, repeated at a one month interval. Inter- and intraclass correlation coefficients were determined. Standing and supine measurements were compared for each femoral head.Aims
Methods
Supracondylar fractures of the humerus (SCH) are the most common fractures sustained following a fall among children. The majority of these fractures are mild, but the most severe injury types can result in a disruption to the nerves and blood supply resulting in limb threatening injuries and potential life-long disability. Better understanding of mechanisms of injury and child-related factors that influence injury, especially for severe cases, is crucial to identifying best practices and informing policy. We aim to stratify fractures and examine the associated mechanisms and circumstances of injury to identify best practices and inform supportive policy. In doing so, we plan to investigate why some children sustain more severe fractures than others by exploring mechanisms and locations of injury, and risk-taking behaviours. A prospective, mixed-methods pilot study employing a child-led research design. Our approach links narratives from qualitative photo elicitation interviews (PEI) to mapped images of the locations of injury using geotagged photographs children have taken themselves, complications and injury outcomes, and an assessment of overall risk-taking tendencies. Participants aged six-12, with the help of their photographs, were able to lay out the events leading up to, including, and following their injury. Much of this information was either not included in their medical charts or was markedly different. Themes included not being able to prevent the injury and being adventurous, as well as becoming more cautious afterwards. These can have applications to the necessity of exploration as well as possibilities to prevent injury or not. Thus, the in-depth, first-person retelling of injury mechanism illustrated the need for mechanistic data and statistics beyond injury location alone. Risk-taking behaviours, as scored by the Sensation Seeking Scale for Children, correlated to injury severity, which is known to be associated with poorer outcomes and long-lasting complications. PEI of children sustaining SCH fractures in Vancouver reveals mechanisms of injury beyond those previously reported in literature and suggest the feasibility of a large-scale study. PEI in this age group allows for clarifications and a clearer picture of injury mechanism as well as context of injury. These aspects significantly affect our ability to determine the relationship between injury mechanism and injury severity. Mixed-methods analysis of child-directed data as well as quantitative injury demographics reveals unique translational knowledge which can be shared with clinicians, patients/care-givers, community-based health teams, and local policy makers to make timely and impactful improvements in injury prevention, clinical practice, and play structure safety.
This pilot study aims to investigate the utility and feasibility of a unique upright MR scan for imaging hips affected by Legg-Calve-Perthes Disease (LCPD) with patient standing up, in comparison to the standard supine scans. Protocol development using this unique upright MRI included healthy adult and child volunteers. Optimum patient positioning in a comparable way between supine to standing was assessed. The balance between shorter scan time (to what a child can tolerate) and longer scan time (for better image acquisition). The study protocol has begun in 2 children with LCPD. Patient recruitment continues. Early results indicate a dynamic deformity of the femoral head in early stage LCP disease. Femoral epiphysis height decreased on standing (7.8 to 6.8mm), width increased on standing (16.6 to 20.9mm) and lateral extrusion increased (3.5 to 4.1mm). Overall epiphyseal shape changed from trapezoidal (LCP femoral head when supine) to flattened triangular (LCP femoral head when standing). Differences were thus demonstrated in all parameters of bony epiphyseal height, width, extrusion and shape of a femoral head with LCP Disease when the child stood and loaded the affected hip. Satisfactory image acquisition was possible with Coronal T1 GFE sequences, with both hips in the Field of View. 2.5min scans were performed with the child standing first, then supine. Hip position was comparable when standing and supine. Longer scans were not tolerated by younger children, more so those with LCP disease. To our knowledge this is the first reported use of standing MRI in LCPD. A dynamic deformity has been demonstrated, with flattening, widening and worsened lateral extrusion when the child is standing compared to supine. This proof of concept investigation demonstrates the feasibility of upright MRI scanning and may demonstrate previously undetected deformity.