Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 5 - 5
1 Jul 2020
Tanzer M Chuang P Ngo C Aponte C Song L TenHuisen K
Full Access

Porous surfaces on orthopaedic implants have been shown to promote tissue ingrowth. This study evaluated biological fixation of novel additively manufactured porous implants with and without hydroxyapatite coatings in a canine transcortical model.

Laser rapid manufacturing (LRM) Ti6Al4V cylindrical implants were built with a random interconnected architecture mimicking cancellous bone (5.2 mm diameter, 10mm length, 50–60% porous, mean pore size 450μm). Three groups were investigated in this study: as-built with no coating (LRM), as-built coated with solution precipitated hydroxyapatite (LRM-PA), and as-built coated with a plasma sprayed hydroxyapatite (LRM-PSHA). Implants were press-fit into a 5mm unicortical, perpendicular drill hole in the femoral diaphysis of the left and right femurs in 12 canines. Right femora were harvested for histology (SEM, bone ingrowth into implant within cortical region) and left femora for mechanical push-out testing (shear strength of bone-implant interface) at 4 and 12 weeks (N=6, un-paired Student's t-test, p=0.05).

For mean bone ingrowth, there was no significant difference between groups at 4 weeks (LRM, LRM-PA, LRM-PSHA: 41.5+8.6%, 51+5.5% and 53.2+11%, respectively) or 12 weeks (LRM, LRM-PA, LRM-PSHA: 64.4+2.8%, 59.9+7.6%, 64.9+6.4%, respectively). LRM and LRM-PA implants had more bone ingrowth at 12 weeks than 4 weeks (p < 0 .05). Mean shear strength of all implants at 12 weeks (LRM, LRM-PA, LRM-PSHA: 39.9+3.6MPa, 33.7+4.6MPa, 36+4.1MPa respectively) were greater than at 4 weeks (LRM, LRM-PA, LRM-PSHA: 21.6+2.8MPa, 20.7+1.1MPa, 20.2+2.5MPa respectively) (p < 0 .05). No significant difference was observed between all groups at 4 or 12 weeks.

Overall, this canine study confirmed the suitability of this novel additive manufacturing porous material for biological fixation by bone ingrowth. All implants exhibited high bone ingrowth and mechanical shear strength in this canine model. No difference was observed between uncoated and hydroxyapatite coated implants.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 112 - 112
1 Feb 2017
Faizan A Chuang P Aponte C Sharkey P
Full Access

Introduction

Various 2D and 3D surfaces are available for cementless fixation of acetabular cups. The goal of these surface modifications is to improve fixation between the metallic cups and surrounding bone. Radiographs have historically been used to evaluate the implant-to-bone fixation around the acetabular cups. In general, a well fixed cup shows no gaps or radiolucency around the cup's outer diameter. In post-operative radiographs, the presence of progressive radiolucent zones of 2mm or more around the implant in the three radiographic zones is indicative of aseptic loosening, as described by DeLee and Charnley [1]. In this cadaveric study, we investigated the X-ray image characteristics of two different types of acetabular shell surfaces (2D and 3D) to evaluate the implant-to-bone interface in the two designs.

Methods

Six human cadavers were bilaterally implanted with acetabular cups by an orthopaedic surgeon. 2D surface cups (Trident, Stryker, Mahwah, NJ) and 3D surface cups (Tritanium, Stryker, Mahwah, NJ) were randomized between the left and right acetabula. The surgeon used his regular surgical technique (1 mm under reaming) to implant the acetabular cups. The cadavers were sent for X-ray imaging after the operation, Figure 1A. Following the X-ray imaging, the acetabular cups were carefully resected from the cadavers. Enough bone around the cups was retained for analysis of the implant-to-bone interface by contact X-ray. The acetabular cups with the surrounding bone were fixed in 70% isopropyl alcohol for about a week and subsequently embedded in polymethyl methacrylate. The embedded cups were sectioned at 30° intervals using a diamond saw in the coronal plane, as recommended by Engh et al [2], Figure 1B. The sectioning of the samples produced 6 slices of each cup where the implant-bone interface could easily be visualized for evaluation with contact X-ray.