Accurate and precise acetabular reaming is a requirement for the press-fit stability of cementless acetabular hip replacement components. The accuracy of reaming depends on the reamer, the reaming technique and the bone quality. Conventional reamers wear with use resulting in inaccurate reaming diameters, whilst the theoretical beneficial effect of ‘whirlwind’ reaming over straight reaming has not previously been documented. Our aim was to compare the accuracy and precision of single use additively-manufactured reamers with new conventional reamers and to compare the effect of different acetabular reaming techniques. Forty composite bone models, half high-density and half low-density, were reamed with a new 61 mm conventional acetabular reamer using either straight or ‘whirlwind’ reaming techniques. This was repeated with a 61 mm single use additively-manufactured reamer. Reamed cavities were scanned using a 3D laser scanner with mean diameters of reamed cavities compared using the Mann-Whitney U test to determine any statistically significant differences between groups (p<0.05) [Fig. 1).Aims
Materials and Methods
The treatment of patients with osteoarthritis of the knee and associated extra-articular deformity of the leg is challenging. Current teaching recognises two possible approaches: (1) a total knee replacement (TKR) with intra-articular bone resections to correct the malalignment or (2) an extra-articular osteotomy to correct the malalignment together with a TKR (either simultaneously or staged). However, a number of these patients only have unicompartmental knee osteoarthritis and, in the absence of an extra-articular deformity would be ideal candidates for joint preserving surgery such as unicompartmental knee replacement (UKR) given its superior functional outcome and lower cost relative to a TKR [1). We report four cases of medial unicondylar knee replacement, with a simultaneous extra-articular osteotomy to correct deformity, using novel 3D printed patient-specific guides (Embody, UK) (see Figure 1). The procedure was successful in all four patients, and there were no complications. A mean increase in the Oxford knee score of 9.5, and in the EQ5D VAS of 15 was observed. To our knowledge this is the first report of combined osteotomy and unicompartmental knee replacement for the treatment of extra-articular deformity and knee osteoarthritis. This technically challenging procedure is made possible by a novel 3D printed patient-specific guide which controls osteotomy position, degree of deformity correction (multi-plane if required), and orientates the saw-cuts for the unicompartmental prosthesis according to the corrected leg alignment. Using 3D printed surgical guides to perform operations not previously possible represents a paradigm shift in knee surgery. We suggest that this joint preserving approach should be considered the preferred treatment option for suitable patients.
Patient Specific Instrumentation (PSI) has the potential to allow surgeons to perform procedures more accurately, at lower cost and faster than conventional instrumentation. However, studies using PSI have failed to convincingly demonstrate any of these benefits clinically. The influence of guide design on the accuracy of placement of PSI has received no attention within the literature. Our experience has suggested that surgeons gain greater benefit from PSI when undertaking procedures they are less familiar with. Lateral unicompartmental knee replacement (UKR) is relatively infrequently performed and may be an example of an operation for which PSI would be of benefit. We aimed to investigate the impact on accuracy of PSI with respect to the area of contact, the nature of the contact (smooth or studded guide surfaces) and the effect of increasing the number of contact points in different planes. A standard anatomy tibial Sawbone was selected for use in the study and a computed tomography scan obtained to facilitate the production of PSI. Nylon PSI guides were printed on the basis of a lateral UKR plan devised by an orthopaedic surgeon. A control PSI guide with similar dimensions to the cutting block of the Oxford Phase 3 UKR tibial guide was produced, contoured to the anterior tibial surface with multiple studs on the tibial contact surface. Variants of this guide were designed to assess the impact of design features on accuracy. These were: a studded guide with a 40% reduction in tibial contact area, a non-studded version of the control guide, the control guide with a shim to provide articular contact, a guide with an extension to allow distal referencing at the ankle and a guide with a distal extension and an articular shim. All guides were designed with an appendage that facilitated direct attachment to a navigation machine (figure 1). 36 volunteers were asked to place each guide on the tibia with reference to a 3D model of the operative plan. The order of placement was varied using a counterbalanced latin square design to limit the impact of the learning effect. The navigation machine recorded deviations from the plan in respect of proximal-distal and medial-lateral translations as well as rotation around all three axes. Statistical analysis was performed on the compound translational and rotational errors for each guide using ANOVA with Bonferroni correction with statistical significance at p<0.05.Introduction
Method
Opening wedge high tibial osteotomy is an attractive surgical option for physically active patients with early osteoarthritis and varus malalignment. Unfortunately use of this surgical technique is frequently accompanied by an unintended increase in the posterior tibial slope, resulting in anterior tibial translation, and consequent altered knee kinematics and cartilage loading(1). To address this unintended consequence, it has been recommended that the relative opening of the anteromedial and posterolateral corners of the osteotomy are calculated pre-operatively using trigonometry (1). This calculation assumes that the saw-cut is made parallel to the native posterior slope; yet given the current reliance on 2D images and the ‘surgeon's eye’ to guide the saw-cut, this assumption is questionable. The aim of this study was to explore how accurately the native posterior tibial slope is reproduced with a traditional freehand osteotomy saw-cut, and whether novel 3D printed patient-specific guides improve this accuracy. 26 fourth year medical students with no prior experience of performing an osteotomy were asked to perform two osteotomy saw-cuts in foam cortical shell tibiae; one freehand, and one with a 3D printed surgical guide (Embody, London) that was designed using a CT scan of the bone model. The students were instructed to aim for parallelity with a hinge pin which had been inserted (with the use of a highly conforming 3D printed guide) parallel to the posterior slope of the native joint. For the purpose of analysis, the sawbones were consistently orientated along their mechanical and anatomical tibial axes using custom moulded supports. Digital photographs taken in the plane of the osteotomy were analysed with ImageJ software to calculate the angular difference in the sagittal plane between the hinge-pin and saw-cut. Statistical analysis was performed with SPSS v21 (Chicago, Illinois); a paired t-test was used to compare the freehand and patient-specific guide techniques. Statistical significance was set at a p-value <0.05.Introduction
Methods
Problematic bone defects are encountered regularly in orthopaedic practice particularly in fracture non-union, revision hip and knee arthroplasty, following bone tumour excision and in spinal fusion surgery. At present the optimal source of graft to ‘fill’ these defects is autologous bone but this has significant drawbacks including harvest site morbidity and limited quantities. Bone marrow has been proposed as the main source of osteogenic stem cells for the tissue-engineered cell therapy approach to bone defect management. Such cells constitute a minute proportion of the total marrow cell population and their isolation and expansion is a time consuming and expensive strategy. In this study we investigated human bone marrow stem cells as a potential treatment of bone defect by looking at variability in patient osteogenic cell populations as a function of patient differences. We produced a model to predict which patients would be more suited to cell based therapies and propose possible methods for improving the quality of grafts. Bone marrow was harvested from 30 patients undergoing elective total hip replacement surgery in Musgrave Park Hospital, Belfast (12 males, 18 females, age range 52-82 years). The osteogenic stem cell fraction was cultured and subsequently analysed using colony forming efficiency assays, flow cytometry, fluorescence activated cell sorting and proteomics.Introduction
Methods