Metaphyseal tritanium cones can be used to manage the tibial bone loss commonly encountered at revision total knee arthroplasty (rTKA). Tibial stems provide additional fixation and are generally used in combination with cones. The aim of this study was to examine the role of the stems in the overall stability of tibial implants when metaphyseal cones are used for rTKA. This computational study investigates whether stems are required to augment metaphyseal cones at rTKA. Three cemented stem scenarios (no stem, 50 mm stem, and 100 mm stem) were investigated with 10 mm-deep uncontained posterior and medial tibial defects using four loading scenarios designed to mimic activities of daily living.Aims
Methods
Several previous studies have examined the mechanical environment in the femur using computational modelling. In particular the proximal femur has been extensively studied using finite element (FE) analyses. This study considers the issues associated with modelling with special interest in the distal femur. FE models require appropriate input on the geometry of the system being considered, material properties of different components, loading regimes and boundary conditions (i.e. the manner in which the system is supported). This study focuses on the last two of the above. A number of models with variable levels of complexity; and different boundary and loading conditions were considered. The simplest loading and boundary conditions considered comprised load applications at the tibio-femoral joint with the proximal femur artificially restrained. More complex models had the femur fully supported on muscles and ligaments. In each case the stress-strain environment in the femur was examined. The results show that the sophistication of the model needs to be based on the answers being sought from the analysis. Some good predictions on the mechanical environment can be made with relatively crude models. For example the stress-strain behaviour in the vicinity of the knee joint was found to be reasonably well predicted by the model that was artificially restrained in the mid-femoral region. Further while different models can be used for comparing different scenarios (e.g. forces during the gait cycle) true quantitative measures are strongly dependent on experimental loading data. The study also shows that it is important to generate and evaluate models of increasing complexity in order to maintain transparency with respect to the influence of different parameters associated with loading and boundary conditions.
Femoral components used in total knee arthroplasty (TKA) are primarily designed on the basis of kinematics and ease of fixation. This study considers the stress-strain environment in the distal femur due to different implant internal geometry variations (based on current industry standards) using finite element (FE) analyses. Both two and three dimensional models are considered for a range of physiological loading scenarios – from full extension to deep flexion. Issues associated with micro-motion at the bone-implant interface are also considered. Two (plane strain) and three dimensional finite element analyses were conducted to examine implant micro-motions and stability. The simple 2D models were used to examine the influence of anterior-posterior (AP) flange angle on implant stability. AP slopes of 3°, 7° and 11° were considered with contact between bone and implant interfaces being modeled using the standard coulomb friction model. The direction and region of loading was based on loading experienced at full extension, 90° flexion and 135° flexion. Three main model variations were created for the 3D analyses, the first model represented an intact distal femur, the second a primary implanted distal femur and the third a distal femur implanted with a posterior stabilising implant. Further each of the above 3D model sets were divided into two group, the first used a frictional interface between the bone and implant to characterise the behavior of uncemented implants post TKA and the second group assumed 100% osseointegration had already taken place and focused on examining the subsequent stress/strain environment in the femur with respect to different femoral component geometries relative the intact distal femur model.Study Aim
Materials and methods