Non-optimal clinical alignment of components in total hip replacements (THRs) may lead to edge loading of the acetabular cup liner. This has the potential to cause changes to the liner rim not accounted for in standard wear models. A greater understanding of the material behaviours could be beneficial to design and surgical guidance for THR devices. The aim of this research was to combine finite element (FE) modelling and experimental simulation with microstructural assessment to examine material behaviour changes during edge loading. A dynamic deformable FE model, matching the experimental conditions, was created to simulate the stress strain environment within liners. Five liners were tested for 4Mc (million cycles) of standard loading (ISO14242:1) followed by 3Mc of edge loading with dynamic separation (ISO14242:4) in a hip simulator. Microstructural measurements by Raman spectroscopy were taken at unloaded and highly loaded rim locations informed by FE results. Gravimetric and geometric measurements were taken every 1Mc cycles. Under edge loading, peak Mises stress and plastic deformation occur below the surface of the rim during heel strike. After 7Mc, microstructural analysis determined edge loaded regions had an increased crystalline mass fraction compared to unloaded regions (p<0.05). Gravimetric wear rates of 12.5mm3/Mc and 22.3mm3/Mc were measured for standard and edge loading respectively. A liner penetration of 0.37mm was measured after 7Mc. Edge loading led to an increase in gravimetric wear rate indicating a different wear mechanism is occurring. FE and Raman results suggest that changes to material behaviour at the rim could be possible. These methods will now be used to assess more liners and over a larger number of cycles. They have potential to explore the impact of edge loading on different surgical and patient variables.