Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 90 - 90
1 Apr 2019
Cowie RM Pallem N Briscoe A Fisher J Jennings LM
Full Access

Introduction

PEEK-OPTIMA™ has been considered as an alternative to cobalt chrome in the femoral component of total knee replacements. Whole joint wear simulation studies of both the tibiofemoral and patellofemoral joints carried out to date have shown an equivalent wear rate of UHMWPE tibial and patella components against PEEK and cobalt chrome (CoCr) femoral components. In this study, the influence of third body wear on UHMWPE-on-PEEK was investigated, tests on UHMWPE-on-CoCr were carried out in parallel to compare PEEK to a conventional femoral component material.

Methods

Wear simulation was carried out in simple geometry using a 6-station multi-directional pin-on-plate simulator. 5 scratches were created on each PEEK and CoCr plate perpendicular to the direction of the wear test using a diamond stylus to produce scratches with a geometry similar to that observed in retrieved CoCr femoral components. To investigate the influence of scratch lip height on wear, scratches of approximately 1, 2 and 4µm lip height were created. Wear simulation of GUR 1020 UHMWPE pins (conventional, non-sterile) against the plates was carried out for 1 million cycles (MC) using 17g/l bovine serum as a lubricant using kinematic conditions to replicate the average contact pressure and cross-shear in a total knee replacement. Wear of UHMWPE pins was measured gravimetrically and the surface topography of the plates assessed using a contacting Form Talysurf. Wear factors of the pins against the scratched plates were compared to unscratched controls (0µm lip height). Minimum n=3 for each condition and statistical analysis carried out using ANOVA with significance taken at p<0.05.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 50 - 50
1 Apr 2019
Cowie RM Briscoe A Fisher J Jennings LM
Full Access

Introduction

PEEK-OPTIMA™ has been considered as an alternative to cobalt chrome in the femoral component of total knee replacements. Wear simulation studies of both the tibiofemoral and patellofemoral joints carried out to date have shown an equivalent wear rate of UHMWPE tibial and patella components against PEEK and cobalt chrome (CoCr) femoral components implanted under optimal alignment conditions. In this study, fundamental pin-on-plate studies have been carried out to investigate the wear of UHMWPE-on-PEEK under a wider range of contact pressure and cross-shear conditions.

Methods

The study was carried out in a 6 station multi-axial pin-on-plate reciprocating rig. UHMPWE pins (conventional, non- sterile) were articulated against PEEK-OPTIMA™ plates, initial Ra ∼0.02µm. The lubricant used was 25% bovine serum (17g/l) supplemented with 0.03% sodium azide. The contact pressure and cross-shear ratio conditions were selected to replicate those in total knee replacements and to be comparable to previously reported studies of UHMPWE-on-CoCr tested in the same pin-on-plate simulators. Contact pressures from 2.1 to 25.5MPa were created by changing the diameter of the contact face of the pin, the cross-shear ratios ranged from 0 (uniaxial motion) to 0.18. Wear of the UHMWPE pins was measured gravimetrically and the surface topography of the plates assessed using a contacting Form Talysurf. N=6 was carried out for each condition and statistical analysis carried out using ANOVA with significance taken at p<0.05.


Bone & Joint Research
Vol. 8, Issue 2 | Pages 65 - 72
1 Feb 2019
Cowie RM Aiken SS Cooper JJ Jennings LM

Objectives

Bone void fillers are increasingly being used for dead space management in arthroplasty revision surgery. The aim of this study was to investigate the influence of calcium sulphate bone void filler (CS-BVF) on the damage and wear of total knee arthroplasty using experimental wear simulation.

Methods

A total of 18 fixed-bearing U2 total knee arthroplasty system implants (United Orthopedic Corp., Hsinchu, Taiwan) were used. Implants challenged with CS-BVF were compared with new implants (negative controls) and those intentionally scratched with a diamond stylus (positive controls) representative of severe surface damage (n = 6 for each experimental group). Three million cycles (MC) of experimental simulation were carried out to simulate a walking gait cycle. Wear of the ultra-high-molecular-weight polyethylene (UHMWPE) tibial inserts was measured gravimetrically, and damage to articulating surfaces was assessed using profilometry.