Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
The Bone & Joint Journal
Vol. 106-B, Issue 3 Supple A | Pages 51 - 58
1 Mar 2024
Jenkinson MRJ Meek DRM Tate R Brady A MacMillan S Grant H Currie S

Aims

Elevated blood cobalt levels secondary to metal-on-metal (MoM) hip arthroplasties are a suggested risk factor for developing cardiovascular complications including cardiomyopathy. Clinical studies assessing patients with MoM hips using left ventricular ejection fraction (LVEF) have found conflicting evidence of cobalt-induced cardiomyopathy. Global longitudinal strain (GLS) is an echocardiography measurement known to be more sensitive than LVEF when diagnosing early cardiomyopathies. The extent of cardiovascular injury, as measured by GLS, in patients with elevated blood cobalt levels has not previously been examined.

Methods

A total of 16 patients with documented blood cobalt ion levels above 13 µg/l (13 ppb, 221 nmol/l) were identified from a regional arthroplasty database. They were matched with eight patients awaiting hip arthroplasty. All patients underwent echocardiography, including GLS, investigating potential signs of cardiomyopathy.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 31 - 31
23 Jun 2023
Meek D Jenkinson M Macmillan S Tate R Grant H Currie S
Full Access

Elevated blood cobalt secondary to metal-on-metal (MoM) hip arthroplasties has been shown to be a risk factor for developing cardiovascular complications including cardiomyopathy. Published case reports document cardiomyopathy in patients with blood cobalt levels as low as 13µg/l. Clinical studies have found conflicting evidence of cobalt-induced cardiomyopathy in patients with MoM hips. The extent of cardiovascular injury, measured by global longitudinal strain (GLS), in patients with elevated blood cobalt levels has not previously been examined.

Sixteen patients with prospectively collected blood cobalt ion levels above 13µg/l were identified and matched with eight patients awaiting hip arthroplasty with no history of cobalt implants. Patients underwent echocardiogram assessment including GLS.

Patients with MoM hip arthroplasties had a mean blood cobalt level of 29µg/l compared to 0.01µg/l in the control group. There was no difference or correlation in EF, left ventricular (LV) end systolic dimension, LV end diastolic dimension, fractional shortening, ventricular wall thickness or E/e’ ratio. However, GLS was significantly reduced in patients with MoM hip arthroplasties compared to those without (−15.2% v −18%, (MoM v control) p= 0.0125). Pearson correlation demonstrated that GLS is significantly correlated with blood cobalt level (r= 0.8742, p=0.0009).

For the first time, this study has demonstrated reduced cardiac function in the presence of normal EF as assessed by GLS in patients with elevated cobalt above 13µg/l. As GLS is a more sensitive measure of systolic function than EF, routine echocardiogram assessment including GLS should be performed in all patients with MoM hip arthroplasties and elevated blood cobalt.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_11 | Pages 9 - 9
7 Jun 2023
Jenkinson M Meek D MacMillan S Tate R Grant MH Currie S
Full Access

Elevated blood cobalt secondary to metal-on-metal (MoM) hip arthroplasties has been shown to be a risk factor for developing cardiovascular complications including cardiomyopathy. Published case reports document cardiomyopathy in patients with blood cobalt levels as low as 13µg/l (13ppb, 221nmol/l). Clinical studies have found conflicting evidence of cobalt-induced cardiomyopathy in patients with MoM hips. Global longitudinal strain (GLS) is an echocardiography measurement known to be more sensitive than ejection fraction at diagnosing early cardiomyopathies. The extent of cardiovascular injury, as measured by GLS, in patients with elevated blood cobalt levels has not previously been examined.

Sixteen patients with documented blood cobalt ion levels above 13µg/l were identified from a regional arthroplasty database. They were matched with eight patients awaiting hip arthroplasty with no history of cobalt implants. All patients underwent electrocardiogram and echocardiogram assessment for signs of cardiomyopathy including GLS.

Patients with MoM hip arthroplasties had a mean blood cobalt level of 29µg/l (495nmol/l) compared to 0.01µg/l (0.2nmol/l) in the control group. There was no difference or correlation in ejection fraction (EF), left ventricular (LV) end systolic dimension, LV end diastolic dimension, fractional shortening, ventricular wall thickness or E/e’ ratio. However, GLS was significantly reduced in patients with MoM hip arthroplasties compared to those without (−15.2% v −18%, (MoM v control) p= 0.0125). Pearson correlation demonstrated that GLS is significantly correlated with blood cobalt level (r= 0.8742, p=0.0009).

For the first time, this study has demonstrated reduced cardiac function in the presence of normal EF as assessed by GLS in patients with elevated cobalt above 13µg/l. As GLS is a more sensitive measure of systolic function than EF, routine echocardiogram assessment including GLS should be performed in all patients with MoM hip arthroplasties and elevated blood cobalt above 13µg/l. Further work is recommended to assess if these cardiac changes are present in patients with elevated blood cobalt levels below 13µg/l.


Bone & Joint Research
Vol. 10, Issue 6 | Pages 340 - 347
1 Jun 2021
Jenkinson MRJ Meek RMD Tate R MacMillan S Grant MH Currie S

Elevated levels of circulating cobalt ions have been linked with a wide range of systemic complications including neurological, endocrine, and cardiovascular symptoms. Case reports of patients with elevated blood cobalt ions have described significant cardiovascular complications including cardiomyopathy. However, correlation between the actual level of circulating cobalt and extent of cardiovascular injury has not previously been performed. This review examines evidence from the literature for a link between elevated blood cobalt levels secondary to metal-on-metal (MoM) hip arthroplasties and cardiomyopathy. Correlation between low, moderate, and high blood cobalt with cardiovascular complications has been considered. Elevated blood cobalt at levels over 250 µg/l have been shown to be a risk factor for developing systemic complications and published case reports document cardiomyopathy, cardiac transplantation, and death in patients with severely elevated blood cobalt ions. However, it is not clear that there is a hard cut-off value and cardiac dysfunction may occur at lower levels. Clinical and laboratory research has found conflicting evidence of cobalt-induced cardiomyopathy in patients with MoM hips. Further work needs to be done to clarify the link between severely elevated blood cobalt ions and cardiomyopathy.

Cite this article: Bone Joint Res 2021;10(6):340–347.


Orthopaedic Proceedings
Vol. 85-B, Issue SUPP_I | Pages 58 - 58
1 Jan 2003
Thompson NW Mulgrew AD Cooke A Currie S Nixon JR Beverland DE
Full Access

Currently, all details regarding implants are entered into a real time application on the Musgrave Park Hospital site using the Belfast Orthopaedic Information System (BOIS). This is a visual basic client application with data being stored in an SQL server database. This data collection system operates throughout every location within the hospital including the theatre block.

Loss of continuity occurs however when joint replacement takes place in Musgrave Park Hospital and then revision surgery or other procedures are carried out at other locations. The goal therefore of the Northern Ire-land Implant Register is to collect information on all implants performed and their revisions regardless of their location.

The dataset collected is based on the work of the National Joint Replacement Registry. Our system is designed to support and extend that dataset to provide a more comprehensive joint replacement registry database. This means that reports can be provided to individual sites and data entered into the National registry if required at a later stage.

At present every hospital in Northern Ireland is connected to the HPSS network (similar to the HPSSNet in the UK). What has been developed is a web browser based front end, which requires no complex software installation on any client machine. From this web based tool, staff at other locations can access information held at Musgrave Park Hospital, they can select an implant, or record a new implant and then link any revisions or other procedures carried out.

As all of the information is entered directly into the BOIS database, there is no delay in the information being available to all who access the system. This reduces the need for case notes to be transferred to other sites and the need to contact the other site directly regarding the case. The interface also provides a comprehensive reporting capability so that commonly requested standard reports are available for authorized staff to run from their web browser.

We present an overview of how the web interface works in practice and how data is entered into the system.